Properties

Label 3330i1
Conductor 33303330
Discriminant 1.049×1014-1.049\times 10^{14}
j-invariant 166456688365729143856000000 -\frac{166456688365729}{143856000000}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3x210314x+639220y^2+xy=x^3-x^2-10314x+639220 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3x2z10314xz2+639220z3y^2z+xyz=x^3-x^2z-10314xz^2+639220z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3165027x+40745054y^2=x^3-165027x+40745054 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 0, -10314, 639220])
 
gp: E = ellinit([1, -1, 0, -10314, 639220])
 
magma: E := EllipticCurve([1, -1, 0, -10314, 639220]);
 
oscar: E = elliptic_curve([1, -1, 0, -10314, 639220])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(49,1037)(-49, 1037)0.421874289443191166689749498830.42187428944319116668974949883\infty
(124,62)(-124, 62)0022

Integral points

(124,62) \left(-124, 62\right) , (49,1037) \left(-49, 1037\right) , (49,988) \left(-49, -988\right) , (36,542) \left(36, 542\right) , (36,578) \left(36, -578\right) , (101,737) \left(101, 737\right) , (101,838) \left(101, -838\right) , (356,6302) \left(356, 6302\right) , (356,6658) \left(356, -6658\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3330 3330  = 2325372 \cdot 3^{2} \cdot 5 \cdot 37
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  104871024000000-104871024000000 = 12103115637-1 \cdot 2^{10} \cdot 3^{11} \cdot 5^{6} \cdot 37
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  166456688365729143856000000 -\frac{166456688365729}{143856000000}  = 12103556371550093-1 \cdot 2^{-10} \cdot 3^{-5} \cdot 5^{-6} \cdot 37^{-1} \cdot 55009^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.38771965253937515809947231261.3877196525393751580994723126
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.838413508205320312401849694140.83841350820532031240184969414
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96841880811417050.9684188081141705
Szpiro ratio: σm\sigma_{m} ≈ 4.9626952688540954.962695268854095

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.421874289443191166689749498830.42187428944319116668974949883
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.545295857083249133274792875820.54529585708324913327479287582
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 48 48  = 222(23)1 2\cdot2^{2}\cdot( 2 \cdot 3 )\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.76055562691973978802377887232.7605556269197397880237788723
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.760555627L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5452960.42187448222.760555627\displaystyle 2.760555627 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.545296 \cdot 0.421874 \cdot 48}{2^2} \approx 2.760555627

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3330.2.a.j

qq2+q4+q5q8q10+2q112q13+q166q17+6q19+O(q20) q - q^{2} + q^{4} + q^{5} - q^{8} - q^{10} + 2 q^{11} - 2 q^{13} + q^{16} - 6 q^{17} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 9600
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I10I_{10} nonsplit multiplicative 1 1 10 10
33 44 I5I_{5}^{*} additive -1 2 11 5
55 66 I6I_{6} split multiplicative -1 1 6 6
3737 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1777, 4, 3554, 9], [1, 2, 2, 5], [1, 4, 0, 1], [2777, 1666, 1664, 2775], [2962, 1, 2959, 0], [1, 0, 4, 1], [4437, 4, 4436, 5], [3, 4, 8, 11], [3482, 1, 479, 0], [2221, 4, 2, 9]]
 
GL(2,Integers(4440)).subgroup(gens)
 
Gens := [[1777, 4, 3554, 9], [1, 2, 2, 5], [1, 4, 0, 1], [2777, 1666, 1664, 2775], [2962, 1, 2959, 0], [1, 0, 4, 1], [4437, 4, 4436, 5], [3, 4, 8, 11], [3482, 1, 479, 0], [2221, 4, 2, 9]];
 
sub<GL(2,Integers(4440))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4440=233537 4440 = 2^{3} \cdot 3 \cdot 5 \cdot 37 , index 1212, genus 00, and generators

(1777435549),(1225),(1401),(2777166616642775),(2962129590),(1041),(4437444365),(34811),(348214790),(2221429)\left(\begin{array}{rr} 1777 & 4 \\ 3554 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2777 & 1666 \\ 1664 & 2775 \end{array}\right),\left(\begin{array}{rr} 2962 & 1 \\ 2959 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 4437 & 4 \\ 4436 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 3482 & 1 \\ 479 & 0 \end{array}\right),\left(\begin{array}{rr} 2221 & 4 \\ 2 & 9 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4440])K:=\Q(E[4440]) is a degree-53738156851205373815685120 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4440Z)\GL_2(\Z/4440\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 333=3237 333 = 3^{2} \cdot 37
33 additive 88 74=237 74 = 2 \cdot 37
55 split multiplicative 66 333=3237 333 = 3^{2} \cdot 37
3737 nonsplit multiplicative 3838 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 3330i consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 1110i1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(111)\Q(\sqrt{-111}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.177600.4 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.388626024960000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.5312031978672.4 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit add split ss ord ord ord ord ord ord ss nonsplit ord ss ord
λ\lambda-invariant(s) 2 - 2 1,1 1 1 1 1 1 1 1,1 1 1 1,1 1
μ\mu-invariant(s) 0 - 0 0,0 0 0 0 0 0 0 0,0 0 0 0,0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.