Properties

Label 3330z2
Conductor 33303330
Discriminant 36926037000-36926037000
j-invariant 70259536950653000 -\frac{702595369}{50653000}
CM no
Rank 11
Torsion structure Z/3Z\Z/{3}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2167x9241y^2+xy+y=x^3-x^2-167x-9241 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z167xz29241z3y^2z+xyz+yz^2=x^3-x^2z-167xz^2-9241z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x32667x594074y^2=x^3-2667x-594074 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -167, -9241])
 
gp: E = ellinit([1, -1, 1, -167, -9241])
 
magma: E := EllipticCurve([1, -1, 1, -167, -9241]);
 
oscar: E = elliptic_curve([1, -1, 1, -167, -9241])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/3Z\Z \oplus \Z/{3}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(57,376)(57, 376)1.63152149975035518500461049951.6315214997503551850046104995\infty
(37,166)(37, 166)0033

Integral points

(37,166) \left(37, 166\right) , (37,204) \left(37, -204\right) , (57,376) \left(57, 376\right) , (57,434) \left(57, -434\right) , (777,21256) \left(777, 21256\right) , (777,22034) \left(777, -22034\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3330 3330  = 2325372 \cdot 3^{2} \cdot 5 \cdot 37
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  36926037000-36926037000 = 1233653373-1 \cdot 2^{3} \cdot 3^{6} \cdot 5^{3} \cdot 37^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  70259536950653000 -\frac{702595369}{50653000}  = 12353733731273-1 \cdot 2^{-3} \cdot 5^{-3} \cdot 7^{3} \cdot 37^{-3} \cdot 127^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.707399207207675443992746449340.70739920720767544399274644934
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.158093062873620598295123830880.15809306287362059829512383088
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.95452929404951890.9545292940495189
Szpiro ratio: σm\sigma_{m} ≈ 3.9201042551411293.920104255141129

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.63152149975035518500461049951.6315214997503551850046104995
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.509539253275063506053747197360.50953925327506350605374719736
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 54 54  = 3233 3\cdot2\cdot3\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 33
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.98794548011004614825195939284.9879454801100461482519593928
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.987945480L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5095391.63152154324.987945480\displaystyle 4.987945480 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.509539 \cdot 1.631521 \cdot 54}{3^2} \approx 4.987945480

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3330.2.a.v

q+q2+q4+q5q7+q8+q103q114q13q14+q163q17+2q19+O(q20) q + q^{2} + q^{4} + q^{5} - q^{7} + q^{8} + q^{10} - 3 q^{11} - 4 q^{13} - q^{14} + q^{16} - 3 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2592
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 I3I_{3} split multiplicative -1 1 3 3
33 22 I0I_0^{*} additive -1 2 6 0
55 33 I3I_{3} split multiplicative -1 1 3 3
3737 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3Cs.1.1 3.24.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[6661, 18, 6669, 163], [1, 18, 0, 1], [9991, 18, 9999, 163], [1, 9, 9, 82], [13303, 18, 13302, 19], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1], [3319, 6642, 6822, 5075], [10657, 18, 2673, 163], [11533, 18, 9729, 511]]
 
GL(2,Integers(13320)).subgroup(gens)
 
Gens := [[6661, 18, 6669, 163], [1, 18, 0, 1], [9991, 18, 9999, 163], [1, 9, 9, 82], [13303, 18, 13302, 19], [1, 6, 6, 37], [1, 0, 18, 1], [1, 12, 0, 1], [3319, 6642, 6822, 5075], [10657, 18, 2673, 163], [11533, 18, 9729, 511]];
 
sub<GL(2,Integers(13320))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 13320=2332537 13320 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 37 , index 144144, genus 33, and generators

(6661186669163),(11801),(9991189999163),(19982),(13303181330219),(16637),(10181),(11201),(3319664268225075),(10657182673163),(11533189729511)\left(\begin{array}{rr} 6661 & 18 \\ 6669 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9991 & 18 \\ 9999 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 13303 & 18 \\ 13302 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3319 & 6642 \\ 6822 & 5075 \end{array}\right),\left(\begin{array}{rr} 10657 & 18 \\ 2673 & 163 \end{array}\right),\left(\begin{array}{rr} 11533 & 18 \\ 9729 & 511 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[13320])K:=\Q(E[13320]) is a degree-3627325587456036273255874560 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/13320Z)\GL_2(\Z/13320\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1665=32537 1665 = 3^{2} \cdot 5 \cdot 37
33 additive 22 1 1
55 split multiplicative 66 666=23237 666 = 2 \cdot 3^{2} \cdot 37
3737 split multiplicative 3838 90=2325 90 = 2 \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 3330z consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 370c1, its twist by 3-3.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/3Z\cong \Z/{3}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(3)\Q(\sqrt{-3}) Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z 2.0.3.1-136900.2-c3
33 3.1.1480.1 Z/6Z\Z/6\Z not in database
66 6.0.3241792000.1 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.59140800.1 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
99 9.3.4090596625576107000000.2 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1818 18.0.129572244330949414435923.1 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1818 18.0.19565196851635126921683000000000000.1 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database
1818 18.0.50198942259523899975028947826347000000000000.1 Z/3ZZ/9Z\Z/3\Z \oplus \Z/9\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add split ord ord ord ord ord ord ord ord split ord ord ord
λ\lambda-invariant(s) 12 - 4 1 1 1 3 1 1 1 1 2 1 1 1
μ\mu-invariant(s) 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.