Properties

Label 3332f
Number of curves 11
Conductor 33323332
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 3332f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3332.f1 3332f1 [0,0,0,16807,840350][0, 0, 0, -16807, 840350] 7260624/17-7260624/17 1229332283648-1229332283648 [][] 1612816128 1.20021.2002 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 3332f1 has rank 00.

Complex multiplication

The elliptic curves in class 3332f do not have complex multiplication.

Modular form 3332.2.a.f

sage: E.q_eigenform(10)
 
q+3q34q5+6q9+q113q1312q15+q17+2q19+O(q20)q + 3 q^{3} - 4 q^{5} + 6 q^{9} + q^{11} - 3 q^{13} - 12 q^{15} + q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display