Properties

Label 3360.i
Number of curves 44
Conductor 33603360
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Elliptic curves in class 3360.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3360.i1 3360p2 [0,1,0,1120,14060][0, -1, 0, -1120, -14060] 303735479048/105303735479048/105 5376053760 [2][2] 15361536 0.263590.26359  
3360.i2 3360p3 [0,1,0,145,385][0, -1, 0, -145, 385] 82881856/3601582881856/36015 147517440147517440 [4][4] 15361536 0.263590.26359  
3360.i3 3360p1 [0,1,0,70,200][0, -1, 0, -70, -200] 601211584/11025601211584/11025 705600705600 [2,2][2, 2] 768768 0.082988-0.082988 Γ0(N)\Gamma_0(N)-optimal
3360.i4 3360p4 [0,1,0,0,648][0, -1, 0, 0, -648] 8/354375-8/354375 181440000-181440000 [2][2] 15361536 0.263590.26359  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3360.i have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551T1 - T
771T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 18T+23T2 1 - 8 T + 23 T^{2} 1.23.ai
2929 110T+29T2 1 - 10 T + 29 T^{2} 1.29.ak
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3360.i do not have complex multiplication.

Modular form 3360.2.a.i

Copy content sage:E.q_eigenform(10)
 
qq3+q5+q7+q94q11+6q13q156q174q19+O(q20)q - q^{3} + q^{5} + q^{7} + q^{9} - 4 q^{11} + 6 q^{13} - q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.