sage:E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 3360.i
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3360.i1 |
3360p2 |
[0,−1,0,−1120,−14060] |
303735479048/105 |
53760 |
[2] |
1536 |
0.26359
|
|
3360.i2 |
3360p3 |
[0,−1,0,−145,385] |
82881856/36015 |
147517440 |
[4] |
1536 |
0.26359
|
|
3360.i3 |
3360p1 |
[0,−1,0,−70,−200] |
601211584/11025 |
705600 |
[2,2] |
768 |
−0.082988
|
Γ0(N)-optimal |
3360.i4 |
3360p4 |
[0,−1,0,0,−648] |
−8/354375 |
−181440000 |
[2] |
1536 |
0.26359
|
|
sage:E.rank()
The elliptic curves in class 3360.i have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1−T |
7 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1−10T+29T2 |
1.29.ak
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3360.i do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.