Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 3360.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3360.i1 | 3360p2 | \([0, -1, 0, -1120, -14060]\) | \(303735479048/105\) | \(53760\) | \([2]\) | \(1536\) | \(0.26359\) | |
3360.i2 | 3360p3 | \([0, -1, 0, -145, 385]\) | \(82881856/36015\) | \(147517440\) | \([4]\) | \(1536\) | \(0.26359\) | |
3360.i3 | 3360p1 | \([0, -1, 0, -70, -200]\) | \(601211584/11025\) | \(705600\) | \([2, 2]\) | \(768\) | \(-0.082988\) | \(\Gamma_0(N)\)-optimal |
3360.i4 | 3360p4 | \([0, -1, 0, 0, -648]\) | \(-8/354375\) | \(-181440000\) | \([2]\) | \(1536\) | \(0.26359\) |
Rank
sage: E.rank()
The elliptic curves in class 3360.i have rank \(0\).
Complex multiplication
The elliptic curves in class 3360.i do not have complex multiplication.Modular form 3360.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.