Properties

Label 33600cl
Number of curves $4$
Conductor $33600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cl1")
 
E.isogeny_class()
 

Elliptic curves in class 33600cl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
33600.fa4 33600cl1 \([0, 1, 0, -28908, 2842938]\) \(-2671731885376/1969120125\) \(-1969120125000000\) \([2]\) \(147456\) \(1.6341\) \(\Gamma_0(N)\)-optimal
33600.fa3 33600cl2 \([0, 1, 0, -525033, 146223063]\) \(250094631024064/62015625\) \(3969000000000000\) \([2, 2]\) \(294912\) \(1.9807\)  
33600.fa2 33600cl3 \([0, 1, 0, -588033, 108864063]\) \(43919722445768/15380859375\) \(7875000000000000000\) \([2]\) \(589824\) \(2.3273\)  
33600.fa1 33600cl4 \([0, 1, 0, -8400033, 9367848063]\) \(128025588102048008/7875\) \(4032000000000\) \([2]\) \(589824\) \(2.3273\)  

Rank

sage: E.rank()
 

The elliptic curves in class 33600cl have rank \(0\).

Complex multiplication

The elliptic curves in class 33600cl do not have complex multiplication.

Modular form 33600.2.a.cl

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.