sage:E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 337896.j
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
337896.j1 |
337896j2 |
[0,0,0,−18411,−644746] |
530604/169 |
219822443523072 |
[2] |
912384 |
1.4558
|
|
337896.j2 |
337896j1 |
[0,0,0,3249,−68590] |
11664/13 |
−4227354683136 |
[2] |
456192 |
1.1092
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 337896.j have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
13 | 1−T |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+2T+5T2 |
1.5.c
|
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1+4T+11T2 |
1.11.e
|
17 |
1+17T2 |
1.17.a
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 337896.j do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.