Properties

Label 337896.j
Number of curves 22
Conductor 337896337896
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Elliptic curves in class 337896.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
337896.j1 337896j2 [0,0,0,18411,644746][0, 0, 0, -18411, -644746] 530604/169530604/169 219822443523072219822443523072 [2][2] 912384912384 1.45581.4558  
337896.j2 337896j1 [0,0,0,3249,68590][0, 0, 0, 3249, -68590] 11664/1311664/13 4227354683136-4227354683136 [2][2] 456192456192 1.10921.1092 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 337896.j have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
13131T1 - T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+2T+5T2 1 + 2 T + 5 T^{2} 1.5.c
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 1+4T+11T2 1 + 4 T + 11 T^{2} 1.11.e
1717 1+17T2 1 + 17 T^{2} 1.17.a
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+29T2 1 + 29 T^{2} 1.29.a
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 337896.j do not have complex multiplication.

Modular form 337896.2.a.j

Copy content sage:E.q_eigenform(10)
 
q2q5+2q74q11+q13+O(q20)q - 2 q^{5} + 2 q^{7} - 4 q^{11} + q^{13} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.