Show commands:
SageMath
E = EllipticCurve("u1")
E.isogeny_class()
Elliptic curves in class 337896.u
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
337896.u1 | 337896u2 | \([0, 0, 0, -2366355, 1332141262]\) | \(3041750/169\) | \(81419155566736545792\) | \([2]\) | \(8609280\) | \(2.5757\) | |
337896.u2 | 337896u1 | \([0, 0, 0, 102885, 84187366]\) | \(500/13\) | \(-3131505983336020992\) | \([2]\) | \(4304640\) | \(2.2291\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 337896.u have rank \(0\).
Complex multiplication
The elliptic curves in class 337896.u do not have complex multiplication.Modular form 337896.2.a.u
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.