Properties

Label 337896bc
Number of curves 11
Conductor 337896337896
CM no
Rank 22

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Elliptic curves in class 337896bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
337896.bc1 337896bc1 [0,0,0,162152175,797916091763][0, 0, 0, -162152175, 797916091763] 859256706676000000/3965752347687-859256706676000000/3965752347687 2176179459120721642609008-2176179459120721642609008 [][] 5806080058060800 3.52083.5208 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 337896bc1 has rank 22.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
3311
13131T1 - T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 1+5T2 1 + 5 T^{2} 1.5.a
77 1+7T2 1 + 7 T^{2} 1.7.a
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1717 1+7T+17T2 1 + 7 T + 17 T^{2} 1.17.h
2323 1T+23T2 1 - T + 23 T^{2} 1.23.ab
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 337896bc do not have complex multiplication.

Modular form 337896.2.a.bc

Copy content sage:E.q_eigenform(10)
 
q+4q11+q137q17+O(q20)q + 4 q^{11} + q^{13} - 7 q^{17} + O(q^{20}) Copy content Toggle raw display