Properties

Label 337896f
Number of curves $4$
Conductor $337896$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 337896f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
337896.f3 337896f1 \([0, 0, 0, -23826, 816221]\) \(2725888/1053\) \(577826543251152\) \([2]\) \(884736\) \(1.5315\) \(\Gamma_0(N)\)-optimal
337896.f2 337896f2 \([0, 0, 0, -170031, -26407150]\) \(61918288/1521\) \(13354213444026624\) \([2, 2]\) \(1769472\) \(1.8781\)  
337896.f4 337896f3 \([0, 0, 0, 24909, -83446594]\) \(48668/85683\) \(-3009149429387332608\) \([2]\) \(3538944\) \(2.2247\)  
337896.f1 337896f4 \([0, 0, 0, -2704251, -1711663450]\) \(62275269892/39\) \(1369662917336064\) \([2]\) \(3538944\) \(2.2247\)  

Rank

sage: E.rank()
 

The elliptic curves in class 337896f have rank \(2\).

Complex multiplication

The elliptic curves in class 337896f do not have complex multiplication.

Modular form 337896.2.a.f

sage: E.q_eigenform(10)
 
\(q - 2 q^{5} - q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.