Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 338.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
338.b1 | 338d2 | \([1, 1, 0, -54421, 4945517]\) | \(-1680914269/32768\) | \(-347488235454464\) | \([]\) | \(1560\) | \(1.5836\) | |
338.b2 | 338d1 | \([1, 1, 0, 504, -13112]\) | \(1331/8\) | \(-84835994984\) | \([]\) | \(312\) | \(0.77890\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 338.b have rank \(0\).
Complex multiplication
The elliptic curves in class 338.b do not have complex multiplication.Modular form 338.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.