Properties

Label 338.f
Number of curves 33
Conductor 338338
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 338.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
338.f1 338c3 [1,0,0,77659,8336303][1, 0, 0, -77659, -8336303] 10730978619193/6656-10730978619193/6656 32127240704-32127240704 [][] 10081008 1.33691.3369  
338.f2 338c2 [1,0,0,764,16264][1, 0, 0, -764, -16264] 10218313/17576-10218313/17576 84835994984-84835994984 [][] 336336 0.787550.78755  
338.f3 338c1 [1,0,0,81,467][1, 0, 0, 81, 467] 12167/2612167/26 125497034-125497034 [][] 112112 0.238250.23825 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 338.f have rank 00.

Complex multiplication

The elliptic curves in class 338.f do not have complex multiplication.

Modular form 338.2.a.f

sage: E.q_eigenform(10)
 
q+q2+q3+q4+3q5+q6+q7+q82q9+3q106q11+q12+q14+3q15+q163q172q182q19+O(q20)q + q^{2} + q^{3} + q^{4} + 3 q^{5} + q^{6} + q^{7} + q^{8} - 2 q^{9} + 3 q^{10} - 6 q^{11} + q^{12} + q^{14} + 3 q^{15} + q^{16} - 3 q^{17} - 2 q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.