Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 338.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
338.f1 | 338c3 | \([1, 0, 0, -77659, -8336303]\) | \(-10730978619193/6656\) | \(-32127240704\) | \([]\) | \(1008\) | \(1.3369\) | |
338.f2 | 338c2 | \([1, 0, 0, -764, -16264]\) | \(-10218313/17576\) | \(-84835994984\) | \([]\) | \(336\) | \(0.78755\) | |
338.f3 | 338c1 | \([1, 0, 0, 81, 467]\) | \(12167/26\) | \(-125497034\) | \([]\) | \(112\) | \(0.23825\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 338.f have rank \(0\).
Complex multiplication
The elliptic curves in class 338.f do not have complex multiplication.Modular form 338.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.