Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 33a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
33.a2 | 33a1 | \([1, 1, 0, -11, 0]\) | \(169112377/88209\) | \(88209\) | \([2, 2]\) | \(3\) | \(-0.35921\) | \(\Gamma_0(N)\)-optimal |
33.a3 | 33a2 | \([1, 1, 0, -6, -9]\) | \(30664297/297\) | \(297\) | \([2]\) | \(6\) | \(-0.70578\) | |
33.a1 | 33a3 | \([1, 1, 0, -146, 621]\) | \(347873904937/395307\) | \(395307\) | \([4]\) | \(6\) | \(-0.012632\) | |
33.a4 | 33a4 | \([1, 1, 0, 44, 55]\) | \(9090072503/5845851\) | \(-5845851\) | \([2]\) | \(6\) | \(-0.012632\) |
Rank
sage: E.rank()
The elliptic curves in class 33a have rank \(0\).
Complex multiplication
The elliptic curves in class 33a do not have complex multiplication.Modular form 33.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 2 & 2 \\ 2 & 1 & 4 & 4 \\ 2 & 4 & 1 & 4 \\ 2 & 4 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.