Properties

Label 34.a
Number of curves 44
Conductor 3434
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 34.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
34.a1 34a4 [1,0,0,113,329][1, 0, 0, -113, -329] 159661140625/48275138159661140625/48275138 4827513848275138 [2][2] 1212 0.179490.17949  
34.a2 34a3 [1,0,0,103,411][1, 0, 0, -103, -411] 120920208625/19652120920208625/19652 1965219652 [2][2] 66 0.16709-0.16709  
34.a3 34a2 [1,0,0,43,105][1, 0, 0, -43, 105] 8805624625/23128805624625/2312 23122312 [6][6] 44 0.36982-0.36982  
34.a4 34a1 [1,0,0,3,1][1, 0, 0, -3, 1] 3048625/10883048625/1088 10881088 [6][6] 22 0.71639-0.71639 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 34.a have rank 00.

Complex multiplication

The elliptic curves in class 34.a do not have complex multiplication.

Modular form 34.2.a.a

sage: E.q_eigenform(10)
 
q+q22q3+q42q64q7+q8+q9+6q112q12+2q134q14+q16q17+q184q19+O(q20)q + q^{2} - 2 q^{3} + q^{4} - 2 q^{6} - 4 q^{7} + q^{8} + q^{9} + 6 q^{11} - 2 q^{12} + 2 q^{13} - 4 q^{14} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.