Properties

Label 342a
Number of curves $3$
Conductor $342$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 342a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
342.e2 342a1 \([1, -1, 1, -140, -601]\) \(-413493625/152\) \(-110808\) \([]\) \(60\) \(-0.064137\) \(\Gamma_0(N)\)-optimal
342.e3 342a2 \([1, -1, 1, 85, -2437]\) \(94196375/3511808\) \(-2560108032\) \([3]\) \(180\) \(0.48517\)  
342.e1 342a3 \([1, -1, 1, -770, 66305]\) \(-69173457625/2550136832\) \(-1859049750528\) \([3]\) \(540\) \(1.0345\)  

Rank

sage: E.rank()
 

The elliptic curves in class 342a have rank \(0\).

Complex multiplication

The elliptic curves in class 342a do not have complex multiplication.

Modular form 342.2.a.a

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{7} + q^{8} + 6 q^{11} + 5 q^{13} - q^{14} + q^{16} - 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.