Properties

Label 342a
Number of curves 33
Conductor 342342
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 342a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
342.e2 342a1 [1,1,1,140,601][1, -1, 1, -140, -601] 413493625/152-413493625/152 110808-110808 [][] 6060 0.064137-0.064137 Γ0(N)\Gamma_0(N)-optimal
342.e3 342a2 [1,1,1,85,2437][1, -1, 1, 85, -2437] 94196375/351180894196375/3511808 2560108032-2560108032 [3][3] 180180 0.485170.48517  
342.e1 342a3 [1,1,1,770,66305][1, -1, 1, -770, 66305] 69173457625/2550136832-69173457625/2550136832 1859049750528-1859049750528 [3][3] 540540 1.03451.0345  

Rank

sage: E.rank()
 

The elliptic curves in class 342a have rank 00.

Complex multiplication

The elliptic curves in class 342a do not have complex multiplication.

Modular form 342.2.a.a

sage: E.q_eigenform(10)
 
q+q2+q4q7+q8+6q11+5q13q14+q163q17+q19+O(q20)q + q^{2} + q^{4} - q^{7} + q^{8} + 6 q^{11} + 5 q^{13} - q^{14} + q^{16} - 3 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.