Properties

Label 346560.hw
Number of curves $2$
Conductor $346560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("hw1")
 
E.isogeny_class()
 

Elliptic curves in class 346560.hw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.hw1 346560hw2 \([0, 1, 0, -69261, 6992829]\) \(1590409933520896/45\) \(1039680\) \([]\) \(559872\) \(1.1151\)  
346560.hw2 346560hw1 \([0, 1, 0, -861, 9189]\) \(3058794496/91125\) \(2105352000\) \([]\) \(186624\) \(0.56582\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 346560.hw have rank \(1\).

Complex multiplication

The elliptic curves in class 346560.hw do not have complex multiplication.

Modular form 346560.2.a.hw

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + 2 q^{7} + q^{9} + 3 q^{11} - 4 q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.