E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 346560e
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
346560.e4 |
346560e1 |
[0,−1,0,1324,−197574] |
85184/5625 |
−16936517160000 |
[2] |
921600 |
1.2180
|
Γ0(N)-optimal |
346560.e3 |
346560e2 |
[0,−1,0,−43801,−3383399] |
48228544/2025 |
390217355366400 |
[2,2] |
1843200 |
1.5645
|
|
346560.e2 |
346560e3 |
[0,−1,0,−116001,10724481] |
111980168/32805 |
50572169255485440 |
[2] |
3686400 |
1.9111
|
|
346560.e1 |
346560e4 |
[0,−1,0,−693601,−222106079] |
23937672968/45 |
69371974287360 |
[2] |
3686400 |
1.9111
|
|
The elliptic curves in class 346560e have
rank 1.
The elliptic curves in class 346560e do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.