Properties

Label 346560e
Number of curves 44
Conductor 346560346560
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 346560e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.e4 346560e1 [0,1,0,1324,197574][0, -1, 0, 1324, -197574] 85184/562585184/5625 16936517160000-16936517160000 [2][2] 921600921600 1.21801.2180 Γ0(N)\Gamma_0(N)-optimal
346560.e3 346560e2 [0,1,0,43801,3383399][0, -1, 0, -43801, -3383399] 48228544/202548228544/2025 390217355366400390217355366400 [2,2][2, 2] 18432001843200 1.56451.5645  
346560.e2 346560e3 [0,1,0,116001,10724481][0, -1, 0, -116001, 10724481] 111980168/32805111980168/32805 5057216925548544050572169255485440 [2][2] 36864003686400 1.91111.9111  
346560.e1 346560e4 [0,1,0,693601,222106079][0, -1, 0, -693601, -222106079] 23937672968/4523937672968/45 6937197428736069371974287360 [2][2] 36864003686400 1.91111.9111  

Rank

sage: E.rank()
 

The elliptic curves in class 346560e have rank 11.

Complex multiplication

The elliptic curves in class 346560e do not have complex multiplication.

Modular form 346560.2.a.e

sage: E.q_eigenform(10)
 
qq3q54q7+q92q13+q156q17+O(q20)q - q^{3} - q^{5} - 4 q^{7} + q^{9} - 2 q^{13} + q^{15} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.