Properties

Label 346560e
Number of curves $4$
Conductor $346560$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 346560e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.e4 346560e1 \([0, -1, 0, 1324, -197574]\) \(85184/5625\) \(-16936517160000\) \([2]\) \(921600\) \(1.2180\) \(\Gamma_0(N)\)-optimal
346560.e3 346560e2 \([0, -1, 0, -43801, -3383399]\) \(48228544/2025\) \(390217355366400\) \([2, 2]\) \(1843200\) \(1.5645\)  
346560.e2 346560e3 \([0, -1, 0, -116001, 10724481]\) \(111980168/32805\) \(50572169255485440\) \([2]\) \(3686400\) \(1.9111\)  
346560.e1 346560e4 \([0, -1, 0, -693601, -222106079]\) \(23937672968/45\) \(69371974287360\) \([2]\) \(3686400\) \(1.9111\)  

Rank

sage: E.rank()
 

The elliptic curves in class 346560e have rank \(1\).

Complex multiplication

The elliptic curves in class 346560e do not have complex multiplication.

Modular form 346560.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 4 q^{7} + q^{9} - 2 q^{13} + q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.