sage:E = EllipticCurve("m1")
E.isogeny_class()
Elliptic curves in class 346560m
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
346560.m1 |
346560m1 |
[0,−1,0,−481,−6719] |
−1042568/1125 |
−13307904000 |
[] |
248832 |
0.63752
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 346560m1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1+T |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+3T+7T2 |
1.7.d
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1+2T+17T2 |
1.17.c
|
23 |
1−3T+23T2 |
1.23.ad
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 346560m do not have complex multiplication.
sage:E.q_eigenform(10)