Properties

Label 346560m
Number of curves 11
Conductor 346560346560
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Elliptic curves in class 346560m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
346560.m1 346560m1 [0,1,0,481,6719][0, -1, 0, -481, -6719] 1042568/1125-1042568/1125 13307904000-13307904000 [][] 248832248832 0.637520.63752 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 346560m1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
191911
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+3T+7T2 1 + 3 T + 7 T^{2} 1.7.d
1111 13T+11T2 1 - 3 T + 11 T^{2} 1.11.ad
1313 16T+13T2 1 - 6 T + 13 T^{2} 1.13.ag
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
2323 13T+23T2 1 - 3 T + 23 T^{2} 1.23.ad
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 346560m do not have complex multiplication.

Modular form 346560.2.a.m

Copy content sage:E.q_eigenform(10)
 
qq3q53q7+q9+3q11+6q13+q152q17+O(q20)q - q^{3} - q^{5} - 3 q^{7} + q^{9} + 3 q^{11} + 6 q^{13} + q^{15} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display