Properties

Label 34680bw3
Conductor 3468034680
Discriminant 2.770×1021-2.770\times 10^{21}
j-invariant 10400706415004112060546875 \frac{10400706415004}{112060546875}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2+1324680x2462720832y^2=x^3+x^2+1324680x-2462720832 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z+1324680xz22462720832z3y^2z=x^3+x^2z+1324680xz^2-2462720832z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+107299053x1795645383714y^2=x^3+107299053x-1795645383714 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, 1324680, -2462720832])
 
gp: E = ellinit([0, 1, 0, 1324680, -2462720832])
 
magma: E := EllipticCurve([0, 1, 0, 1324680, -2462720832]);
 
oscar: E = elliptic_curve([0, 1, 0, 1324680, -2462720832])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1031,0)(1031, 0)0022

Integral points

(1031,0) \left(1031, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  34680 34680  = 23351722^{3} \cdot 3 \cdot 5 \cdot 17^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2769786042750000000000-2769786042750000000000 = 121033512177-1 \cdot 2^{10} \cdot 3^{3} \cdot 5^{12} \cdot 17^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  10400706415004112060546875 \frac{10400706415004}{112060546875}  = 22335121711375132^{2} \cdot 3^{-3} \cdot 5^{-12} \cdot 17^{-1} \cdot 13751^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.79544752722430767030361225432.7954475272243076703036122543
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.801218204729578538997818177480.80121820472957853899781817748
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0006253097668431.000625309766843
Szpiro ratio: σm\sigma_{m} ≈ 5.4307453885229925.430745388522992

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0706637988177162238255549305470.070663798817716223825554930547
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 288 288  = 23(223)22 2\cdot3\cdot( 2^{2} \cdot 3 )\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 5.08779351487556811543995499935.0877935148755681154399549993
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

5.087793515L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0706641.000000288225.087793515\displaystyle 5.087793515 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.070664 \cdot 1.000000 \cdot 288}{2^2} \approx 5.087793515

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   34680.2.a.bu

q+q3+q5+q9+4q11+6q13+q15+4q19+O(q20) q + q^{3} + q^{5} + q^{9} + 4 q^{11} + 6 q^{13} + q^{15} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 1990656
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII^{*} additive -1 3 10 0
33 33 I3I_{3} split multiplicative -1 1 3 3
55 1212 I12I_{12} split multiplicative -1 1 12 12
1717 44 I1I_{1}^{*} additive 1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.12.0.8

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[817, 8, 1228, 33], [1283, 1276, 1322, 261], [7, 6, 2034, 2035], [259, 258, 778, 1795], [1, 0, 8, 1], [112, 2037, 835, 2038], [1, 8, 0, 1], [1, 4, 4, 17], [2033, 8, 2032, 9], [1364, 1, 703, 6]]
 
GL(2,Integers(2040)).subgroup(gens)
 
Gens := [[817, 8, 1228, 33], [1283, 1276, 1322, 261], [7, 6, 2034, 2035], [259, 258, 778, 1795], [1, 0, 8, 1], [112, 2037, 835, 2038], [1, 8, 0, 1], [1, 4, 4, 17], [2033, 8, 2032, 9], [1364, 1, 703, 6]];
 
sub<GL(2,Integers(2040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2040=233517 2040 = 2^{3} \cdot 3 \cdot 5 \cdot 17 , index 4848, genus 00, and generators

(8178122833),(128312761322261),(7620342035),(2592587781795),(1081),(11220378352038),(1801),(14417),(2033820329),(136417036)\left(\begin{array}{rr} 817 & 8 \\ 1228 & 33 \end{array}\right),\left(\begin{array}{rr} 1283 & 1276 \\ 1322 & 261 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2034 & 2035 \end{array}\right),\left(\begin{array}{rr} 259 & 258 \\ 778 & 1795 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 112 & 2037 \\ 835 & 2038 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 2033 & 8 \\ 2032 & 9 \end{array}\right),\left(\begin{array}{rr} 1364 & 1 \\ 703 & 6 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2040])K:=\Q(E[2040]) is a degree-5775556608057755566080 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2040Z)\GL_2(\Z/2040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 867=3172 867 = 3 \cdot 17^{2}
33 split multiplicative 44 2312=23172 2312 = 2^{3} \cdot 17^{2}
55 split multiplicative 66 6936=233172 6936 = 2^{3} \cdot 3 \cdot 17^{2}
1717 additive 162162 120=2335 120 = 2^{3} \cdot 3 \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 34680bw consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 2040j4, its twist by 1717.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(51)\Q(\sqrt{-51}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(51)\Q(\sqrt{51}) Z/4Z\Z/4\Z not in database
22 Q(1)\Q(\sqrt{-1}) Z/4Z\Z/4\Z not in database
44 Q(i,51)\Q(i, \sqrt{51}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 4.0.8489664.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.1153190317326336.6 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.4.155870231040000.29 Z/8Z\Z/8\Z not in database
88 8.0.8898073436160000.5 Z/8Z\Z/8\Z not in database
88 8.2.54055796124672.1 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 17
Reduction type add split split add
λ\lambda-invariant(s) - 3 1 -
μ\mu-invariant(s) - 0 0 -

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.