Properties

Label 34a2
Conductor 3434
Discriminant 23122312
j-invariant 88056246252312 \frac{8805624625}{2312}
CM no
Rank 00
Torsion structure Z/6Z\Z/{6}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x343x+105y^2+xy=x^3-43x+105 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x343xz2+105z3y^2z+xyz=x^3-43xz^2+105z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x355755x+5066118y^2=x^3-55755x+5066118 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 0, -43, 105])
 
gp: E = ellinit([1, 0, 0, -43, 105])
 
magma: E := EllipticCurve([1, 0, 0, -43, 105]);
 
oscar: E = elliptic_curve([1, 0, 0, -43, 105])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/6Z\Z/{6}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(8,13)(8, 13)0066

Integral points

(4,1) \left(4, -1\right) , (4,3) \left(4, -3\right) , (8,13) \left(8, 13\right) , (8,21) \left(8, -21\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  34 34  = 2172 \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  23122312 = 231722^{3} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  88056246252312 \frac{8805624625}{2312}  = 2353731725932^{-3} \cdot 5^{3} \cdot 7^{3} \cdot 17^{-2} \cdot 59^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.36981874626848933194337211720-0.36981874626848933194337211720
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.36981874626848933194337211720-0.36981874626848933194337211720
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96590439394766770.9659043939476677
Szpiro ratio: σm\sigma_{m} ≈ 6.4935664848612956.493566484861295

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 4.49566332631370355320674685184.4956633263137035532067468518
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 32 3\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 66
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 0.749277221052283925534457808630.74927722105228392553445780863
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

0.749277221L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor214.4956631.0000006620.749277221\displaystyle 0.749277221 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 4.495663 \cdot 1.000000 \cdot 6}{6^2} \approx 0.749277221

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   34.2.a.a

q+q22q3+q42q64q7+q8+q9+6q112q12+2q134q14+q16q17+q184q19+O(q20) q + q^{2} - 2 q^{3} + q^{4} - 2 q^{6} - 4 q^{7} + q^{8} + q^{9} + 6 q^{11} - 2 q^{12} + 2 q^{13} - 4 q^{14} + q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 I3I_{3} split multiplicative -1 1 3 3
1717 22 I2I_{2} nonsplit multiplicative 1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.6
33 3B.1.1 3.8.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[10, 3, 177, 400], [27, 88, 398, 77], [241, 12, 222, 73], [397, 12, 396, 13], [1, 0, 12, 1], [11, 2, 358, 399], [1, 6, 6, 37], [281, 2, 126, 13], [1, 12, 0, 1]]
 
GL(2,Integers(408)).subgroup(gens)
 
Gens := [[10, 3, 177, 400], [27, 88, 398, 77], [241, 12, 222, 73], [397, 12, 396, 13], [1, 0, 12, 1], [11, 2, 358, 399], [1, 6, 6, 37], [281, 2, 126, 13], [1, 12, 0, 1]];
 
sub<GL(2,Integers(408))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 408=23317 408 = 2^{3} \cdot 3 \cdot 17 , index 9696, genus 11, and generators

(103177400),(278839877),(2411222273),(3971239613),(10121),(112358399),(16637),(281212613),(11201)\left(\begin{array}{rr} 10 & 3 \\ 177 & 400 \end{array}\right),\left(\begin{array}{rr} 27 & 88 \\ 398 & 77 \end{array}\right),\left(\begin{array}{rr} 241 & 12 \\ 222 & 73 \end{array}\right),\left(\begin{array}{rr} 397 & 12 \\ 396 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 358 & 399 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 281 & 2 \\ 126 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[408])K:=\Q(E[408]) is a degree-6016204860162048 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/408Z)\GL_2(\Z/408\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1 1
33 good 22 17 17
1717 nonsplit multiplicative 1818 2 2

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 34a consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/6Z\cong \Z/{6}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(2)\Q(\sqrt{2}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z 2.2.8.1-578.1-d6
44 4.4.9248.1 Z/12Z\Z/12\Z not in database
66 6.0.2255067.2 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
88 8.0.1212153856.6 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
88 8.8.5473632256.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
99 9.3.105212405952.1 Z/18Z\Z/18\Z not in database
1212 deg 12 Z/6ZZ/6Z\Z/6\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database
1818 18.6.23214739404794772903803486208.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 17
Reduction type split ord nonsplit
λ\lambda-invariant(s) 1 2 0
μ\mu-invariant(s) 0 0 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.