Properties

Label 350d
Number of curves 66
Conductor 350350
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 350d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
350.f5 350d1 [1,1,1,13,31][1, 1, 1, -13, 31] 15625/28-15625/28 437500-437500 [2][2] 4848 0.22737-0.22737 Γ0(N)\Gamma_0(N)-optimal
350.f4 350d2 [1,1,1,263,1531][1, 1, 1, -263, 1531] 128787625/98128787625/98 15312501531250 [2][2] 9696 0.119210.11921  
350.f6 350d3 [1,1,1,112,719][1, 1, 1, 112, -719] 9938375/219529938375/21952 343000000-343000000 [2][2] 144144 0.321940.32194  
350.f3 350d4 [1,1,1,888,8719][1, 1, 1, -888, -8719] 4956477625/9411924956477625/941192 1470612500014706125000 [2][2] 288288 0.668510.66851  
350.f2 350d5 [1,1,1,4263,109219][1, 1, 1, -4263, -109219] 548347731625/1835008-548347731625/1835008 28672000000-28672000000 [2][2] 432432 0.871250.87125  
350.f1 350d6 [1,1,1,68263,6893219][1, 1, 1, -68263, -6893219] 2251439055699625/250882251439055699625/25088 392000000392000000 [2][2] 864864 1.21781.2178  

Rank

sage: E.rank()
 

The elliptic curves in class 350d have rank 00.

Complex multiplication

The elliptic curves in class 350d do not have complex multiplication.

Modular form 350.2.a.d

sage: E.q_eigenform(10)
 
q+q2+2q3+q4+2q6q7+q8+q9+2q12+4q13q14+q166q17+q18+2q19+O(q20)q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} - q^{7} + q^{8} + q^{9} + 2 q^{12} + 4 q^{13} - q^{14} + q^{16} - 6 q^{17} + q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236918216318936123663216391836121896321)\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 6 & 9 & 18 \\ 2 & 1 & 6 & 3 & 18 & 9 \\ 3 & 6 & 1 & 2 & 3 & 6 \\ 6 & 3 & 2 & 1 & 6 & 3 \\ 9 & 18 & 3 & 6 & 1 & 2 \\ 18 & 9 & 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.