Properties

Label 350d1
Conductor 350350
Discriminant 437500-437500
j-invariant 1562528 -\frac{15625}{28}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3+x213x+31y^2+xy+y=x^3+x^2-13x+31 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3+x2z13xz2+31z3y^2z+xyz+yz^2=x^3+x^2z-13xz^2+31z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x316875x+1707750y^2=x^3-16875x+1707750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 1, -13, 31])
 
gp: E = ellinit([1, 1, 1, -13, 31])
 
magma: E := EllipticCurve([1, 1, 1, -13, 31]);
 
oscar: E = elliptic_curve([1, 1, 1, -13, 31])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5,2)(-5, 2)0022

Integral points

(5,2) \left(-5, 2\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  350 350  = 25272 \cdot 5^{2} \cdot 7
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  437500-437500 = 122567-1 \cdot 2^{2} \cdot 5^{6} \cdot 7
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1562528 -\frac{15625}{28}  = 1225671-1 \cdot 2^{-2} \cdot 5^{6} \cdot 7^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.22736594230794770122269927620-0.22736594230794770122269927620
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.0320848985249978885230789428-1.0320848985249978885230789428
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01712072138590171.0171207213859017
Szpiro ratio: σm\sigma_{m} ≈ 3.5376652320108273.537665232010827

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 2.65824918026277165889811837922.6582491802627716588981183792
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 4 4  = 221 2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.65824918026277165889811837922.6582491802627716588981183792
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.658249180L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor212.6582491.0000004222.658249180\displaystyle 2.658249180 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 2.658249 \cdot 1.000000 \cdot 4}{2^2} \approx 2.658249180

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   350.2.a.f

q+q2+2q3+q4+2q6q7+q8+q9+2q12+4q13q14+q166q17+q18+2q19+O(q20) q + q^{2} + 2 q^{3} + q^{4} + 2 q^{6} - q^{7} + q^{8} + q^{9} + 2 q^{12} + 4 q^{13} - q^{14} + q^{16} - 6 q^{17} + q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 48
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} split multiplicative -1 1 2 2
55 22 I0I_0^{*} additive 1 2 6 0
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.1
33 3B 9.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[631, 540, 1270, 361], [281, 540, 0, 1], [503, 0, 0, 2519], [1, 0, 36, 1], [19, 36, 720, 1099], [1, 36, 0, 1], [1, 18, 14, 253], [1261, 540, 10, 361], [2485, 36, 2484, 37], [2176, 2025, 1055, 526]]
 
GL(2,Integers(2520)).subgroup(gens)
 
Gens := [[631, 540, 1270, 361], [281, 540, 0, 1], [503, 0, 0, 2519], [1, 0, 36, 1], [19, 36, 720, 1099], [1, 36, 0, 1], [1, 18, 14, 253], [1261, 540, 10, 361], [2485, 36, 2484, 37], [2176, 2025, 1055, 526]];
 
sub<GL(2,Integers(2520))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 2520=233257 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 , index 864864, genus 2121, and generators

(6315401270361),(28154001),(503002519),(10361),(19367201099),(13601),(11814253),(126154010361),(248536248437),(217620251055526)\left(\begin{array}{rr} 631 & 540 \\ 1270 & 361 \end{array}\right),\left(\begin{array}{rr} 281 & 540 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 720 & 1099 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right),\left(\begin{array}{rr} 1261 & 540 \\ 10 & 361 \end{array}\right),\left(\begin{array}{rr} 2485 & 36 \\ 2484 & 37 \end{array}\right),\left(\begin{array}{rr} 2176 & 2025 \\ 1055 & 526 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[2520])K:=\Q(E[2520]) is a degree-66886041606688604160 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/2520Z)\GL_2(\Z/2520\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 175=527 175 = 5^{2} \cdot 7
55 additive 1414 14=27 14 = 2 \cdot 7
77 nonsplit multiplicative 88 50=252 50 = 2 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3, 6, 9 and 18.
Its isogeny class 350d consists of 6 curves linked by isogenies of degrees dividing 18.

Twists

The minimal quadratic twist of this elliptic curve is 14a4, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{-7}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z 2.0.7.1-17500.2-f6
22 Q(5)\Q(\sqrt{5}) Z/6Z\Z/6\Z 2.2.5.1-196.1-a2
44 4.2.11200.2 Z/4Z\Z/4\Z not in database
44 Q(5,7)\Q(\sqrt{5}, \sqrt{-7}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.129654000.2 Z/6Z\Z/6\Z not in database
66 6.6.300125.1 Z/18Z\Z/18\Z not in database
88 8.0.75295360000.8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.6146560000.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.125440000.1 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 12.0.7001316000000.2 Z/18Z\Z/18\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1212 12.0.4413675765625.1 Z/2ZZ/18Z\Z/2\Z \oplus \Z/18\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 16.0.37780199833600000000.1 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7
Reduction type split ord add nonsplit
λ\lambda-invariant(s) 2 0 - 0
μ\mu-invariant(s) 0 0 - 0

All Iwasawa λ\lambda and μ\mu-invariants for primes p5p\ge 5 of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.