E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 3520.n
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3520.n1 |
3520o3 |
[0,0,0,−3788,−89712] |
22930509321/6875 |
1802240000 |
[2] |
2048 |
0.75406
|
|
3520.n2 |
3520o4 |
[0,0,0,−1868,30352] |
2749884201/73205 |
19190251520 |
[2] |
2048 |
0.75406
|
|
3520.n3 |
3520o2 |
[0,0,0,−268,−1008] |
8120601/3025 |
792985600 |
[2,2] |
1024 |
0.40748
|
|
3520.n4 |
3520o1 |
[0,0,0,52,−112] |
59319/55 |
−14417920 |
[2] |
512 |
0.060908
|
Γ0(N)-optimal |
The elliptic curves in class 3520.n have
rank 0.
The elliptic curves in class 3520.n do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.