Properties

Label 3520.n
Number of curves $4$
Conductor $3520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 3520.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3520.n1 3520o3 \([0, 0, 0, -3788, -89712]\) \(22930509321/6875\) \(1802240000\) \([2]\) \(2048\) \(0.75406\)  
3520.n2 3520o4 \([0, 0, 0, -1868, 30352]\) \(2749884201/73205\) \(19190251520\) \([2]\) \(2048\) \(0.75406\)  
3520.n3 3520o2 \([0, 0, 0, -268, -1008]\) \(8120601/3025\) \(792985600\) \([2, 2]\) \(1024\) \(0.40748\)  
3520.n4 3520o1 \([0, 0, 0, 52, -112]\) \(59319/55\) \(-14417920\) \([2]\) \(512\) \(0.060908\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3520.n have rank \(0\).

Complex multiplication

The elliptic curves in class 3520.n do not have complex multiplication.

Modular form 3520.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{5} - 3 q^{9} - q^{11} - 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.