Properties

Label 3520.n
Number of curves 44
Conductor 35203520
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 3520.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3520.n1 3520o3 [0,0,0,3788,89712][0, 0, 0, -3788, -89712] 22930509321/687522930509321/6875 18022400001802240000 [2][2] 20482048 0.754060.75406  
3520.n2 3520o4 [0,0,0,1868,30352][0, 0, 0, -1868, 30352] 2749884201/732052749884201/73205 1919025152019190251520 [2][2] 20482048 0.754060.75406  
3520.n3 3520o2 [0,0,0,268,1008][0, 0, 0, -268, -1008] 8120601/30258120601/3025 792985600792985600 [2,2][2, 2] 10241024 0.407480.40748  
3520.n4 3520o1 [0,0,0,52,112][0, 0, 0, 52, -112] 59319/5559319/55 14417920-14417920 [2][2] 512512 0.0609080.060908 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3520.n have rank 00.

Complex multiplication

The elliptic curves in class 3520.n do not have complex multiplication.

Modular form 3520.2.a.n

sage: E.q_eigenform(10)
 
qq53q9q112q13+6q174q19+O(q20)q - q^{5} - 3 q^{9} - q^{11} - 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.