E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 35280.n
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
35280.n1 |
35280br4 |
[0,0,0,−201243,−34709542] |
10262905636/13125 |
1152696666240000 |
[2] |
196608 |
1.7980
|
|
35280.n2 |
35280br3 |
[0,0,0,−148323,21819602] |
4108974916/36015 |
3162999652162560 |
[2] |
196608 |
1.7980
|
|
35280.n3 |
35280br2 |
[0,0,0,−16023,−221578] |
20720464/11025 |
242066299910400 |
[2,2] |
98304 |
1.4514
|
|
35280.n4 |
35280br1 |
[0,0,0,3822,−27097] |
4499456/2835 |
−3890351248560 |
[2] |
49152 |
1.1048
|
Γ0(N)-optimal |
The elliptic curves in class 35280.n have
rank 1.
The elliptic curves in class 35280.n do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.