Properties

Label 35280.n
Number of curves 44
Conductor 3528035280
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 35280.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35280.n1 35280br4 [0,0,0,201243,34709542][0, 0, 0, -201243, -34709542] 10262905636/1312510262905636/13125 11526966662400001152696666240000 [2][2] 196608196608 1.79801.7980  
35280.n2 35280br3 [0,0,0,148323,21819602][0, 0, 0, -148323, 21819602] 4108974916/360154108974916/36015 31629996521625603162999652162560 [2][2] 196608196608 1.79801.7980  
35280.n3 35280br2 [0,0,0,16023,221578][0, 0, 0, -16023, -221578] 20720464/1102520720464/11025 242066299910400242066299910400 [2,2][2, 2] 9830498304 1.45141.4514  
35280.n4 35280br1 [0,0,0,3822,27097][0, 0, 0, 3822, -27097] 4499456/28354499456/2835 3890351248560-3890351248560 [2][2] 4915249152 1.10481.1048 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 35280.n have rank 11.

Complex multiplication

The elliptic curves in class 35280.n do not have complex multiplication.

Modular form 35280.2.a.n

sage: E.q_eigenform(10)
 
qq54q112q132q17+O(q20)q - q^{5} - 4 q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.