Properties

Label 35280.n
Number of curves $4$
Conductor $35280$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("n1")
 
E.isogeny_class()
 

Elliptic curves in class 35280.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35280.n1 35280br4 \([0, 0, 0, -201243, -34709542]\) \(10262905636/13125\) \(1152696666240000\) \([2]\) \(196608\) \(1.7980\)  
35280.n2 35280br3 \([0, 0, 0, -148323, 21819602]\) \(4108974916/36015\) \(3162999652162560\) \([2]\) \(196608\) \(1.7980\)  
35280.n3 35280br2 \([0, 0, 0, -16023, -221578]\) \(20720464/11025\) \(242066299910400\) \([2, 2]\) \(98304\) \(1.4514\)  
35280.n4 35280br1 \([0, 0, 0, 3822, -27097]\) \(4499456/2835\) \(-3890351248560\) \([2]\) \(49152\) \(1.1048\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 35280.n have rank \(1\).

Complex multiplication

The elliptic curves in class 35280.n do not have complex multiplication.

Modular form 35280.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{11} - 2 q^{13} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.