Properties

Label 352800bf1
Conductor 352800352800
Discriminant 7.852×10277.852\times 10^{27}
j-invariant 44848771388827297416006491549016015625 \frac{448487713888272974160064}{91549016015625}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x370325722425x7178262572117000y^2=x^3-70325722425x-7178262572117000 Copy content Toggle raw display (homogenize, simplify)
y2z=x370325722425xz27178262572117000z3y^2z=x^3-70325722425xz^2-7178262572117000z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x370325722425x7178262572117000y^2=x^3-70325722425x-7178262572117000 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -70325722425, -7178262572117000])
 
gp: E = ellinit([0, 0, 0, -70325722425, -7178262572117000])
 
magma: E := EllipticCurve([0, 0, 0, -70325722425, -7178262572117000]);
 
oscar: E = elliptic_curve([0, 0, 0, -70325722425, -7178262572117000])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(153160,0)(-153160, 0)0022
(306215,0)(306215, 0)0022

Integral points

(153160,0) \left(-153160, 0\right) , (153055,0) \left(-153055, 0\right) , (306215,0) \left(306215, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  352800 352800  = 253252722^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  78518039850270316406250000007851803985027031640625000000 = 26320514782^{6} \cdot 3^{20} \cdot 5^{14} \cdot 7^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  44848771388827297416006491549016015625 \frac{448487713888272974160064}{91549016015625}  = 2631458721913625132^{6} \cdot 3^{-14} \cdot 5^{-8} \cdot 7^{-2} \cdot 19136251^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 4.74039414268667804801493236374.7403941426866780480149323637
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.06684037732794370775563764622.0668403773279437077556376462
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.09640092096988971.0964009209698897
Szpiro ratio: σm\sigma_{m} ≈ 6.775100984272386.77510098427238

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.00927088106184544987807758470320.0092708810618454498780775847032
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2\cdot2^{2}\cdot2^{2}\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.18667277591621758439393084201.1866727759162175843939308420
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  1616 = 424^2    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.186672776L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor2160.0092711.000000128421.186672776\displaystyle 1.186672776 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{16 \cdot 0.009271 \cdot 1.000000 \cdot 128}{4^2} \approx 1.186672776

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 352800.2.a.bf

q4q116q136q174q19+O(q20) q - 4 q^{11} - 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 990904320
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive -1 5 6 0
33 44 I14I_{14}^{*} additive -1 2 20 14
55 44 I8I_{8}^{*} additive 1 2 14 8
77 44 I2I_{2}^{*} additive -1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 2.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[837, 4, 836, 5], [1, 4, 0, 1], [669, 670, 730, 169], [503, 0, 0, 839], [599, 670, 0, 839], [1, 0, 4, 1], [381, 340, 680, 11], [591, 170, 670, 671]]
 
GL(2,Integers(840)).subgroup(gens)
 
Gens := [[837, 4, 836, 5], [1, 4, 0, 1], [669, 670, 730, 169], [503, 0, 0, 839], [599, 670, 0, 839], [1, 0, 4, 1], [381, 340, 680, 11], [591, 170, 670, 671]];
 
sub<GL(2,Integers(840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 , index 4848, genus 00, and generators

(83748365),(1401),(669670730169),(50300839),(5996700839),(1041),(38134068011),(591170670671)\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 669 & 670 \\ 730 & 169 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 599 & 670 \\ 0 & 839 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 381 & 340 \\ 680 & 11 \end{array}\right),\left(\begin{array}{rr} 591 & 170 \\ 670 & 671 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[840])K:=\Q(E[840]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/840Z)\GL_2(\Z/840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 11025=325272 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2}
33 additive 88 39200=255272 39200 = 2^{5} \cdot 5^{2} \cdot 7^{2}
55 additive 1818 14112=253272 14112 = 2^{5} \cdot 3^{2} \cdot 7^{2}
77 additive 3232 7200=253252 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 352800bf consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 3360q1, its twist by 420-420.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(15,42)\Q(\sqrt{15}, \sqrt{42}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(6,70)\Q(\sqrt{-6}, \sqrt{-70}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(7,15)\Q(\sqrt{7}, \sqrt{-15}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 16.0.63456228123711897600000000.20 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.