Properties

Label 35280bj
Number of curves $1$
Conductor $35280$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bj1")
 
E.isogeny_class()
 

Elliptic curves in class 35280bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35280.s1 35280bj1 \([0, 0, 0, 357, 16058]\) \(137564/3125\) \(-114307200000\) \([]\) \(28800\) \(0.80210\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 35280bj1 has rank \(1\).

Complex multiplication

The elliptic curves in class 35280bj do not have complex multiplication.

Modular form 35280.2.a.bj

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{11} - 4 q^{13} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display