Properties

Label 35280bs1
Conductor 3528035280
Discriminant 1.621×10141.621\times 10^{14}
j-invariant 2508888064118125 \frac{2508888064}{118125}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x331458x+2058343y^2=x^3-31458x+2058343 Copy content Toggle raw display (homogenize, simplify)
y2z=x331458xz2+2058343z3y^2z=x^3-31458xz^2+2058343z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x331458x+2058343y^2=x^3-31458x+2058343 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -31458, 2058343])
 
gp: E = ellinit([0, 0, 0, -31458, 2058343])
 
magma: E := EllipticCurve([0, 0, 0, -31458, 2058343]);
 
oscar: E = elliptic_curve([0, 0, 0, -31458, 2058343])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(181,1350)(-181, 1350)2.14318846819026130887078731962.1431884681902613088707873196\infty
(119,0)(119, 0)0022

Integral points

(181,±1350)(-181,\pm 1350), (119,0) \left(119, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  35280 35280  = 24325722^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  162097968690000162097968690000 = 243954772^{4} \cdot 3^{9} \cdot 5^{4} \cdot 7^{7}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2508888064118125 \frac{2508888064}{118125}  = 21133547110732^{11} \cdot 3^{-3} \cdot 5^{-4} \cdot 7^{-1} \cdot 107^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.48739752313360309274560271011.4873975231336030927456027101
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.26591275591475684197710698724-0.26591275591475684197710698724
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.93400531060970080.9340053106097008
Szpiro ratio: σm\sigma_{m} ≈ 4.07626180347166044.0762618034716604

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 2.14318846819026130887078731962.1431884681902613088707873196
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.568055778536338934080392830770.56805577853633893408039283077
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 12222 1\cdot2^{2}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.86980237539169023358579215904.8698023753916902335857921590
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.869802375L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.5680562.14318816224.869802375\displaystyle 4.869802375 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.568056 \cdot 2.143188 \cdot 16}{2^2} \approx 4.869802375

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   35280.2.a.q

qq54q11+6q132q178q19+O(q20) q - q^{5} - 4 q^{11} + 6 q^{13} - 2 q^{17} - 8 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 147456
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 IIII additive 1 4 4 0
33 44 I3I_{3}^{*} additive -1 2 9 3
55 22 I4I_{4} nonsplit multiplicative 1 1 4 4
77 22 I1I_{1}^{*} additive -1 2 7 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 4.6.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[716, 839, 337, 834], [1, 0, 8, 1], [833, 8, 832, 9], [1, 8, 0, 1], [1, 4, 4, 17], [337, 8, 508, 33], [7, 6, 834, 835], [739, 738, 538, 115], [272, 837, 275, 838], [311, 312, 722, 305]]
 
GL(2,Integers(840)).subgroup(gens)
 
Gens := [[716, 839, 337, 834], [1, 0, 8, 1], [833, 8, 832, 9], [1, 8, 0, 1], [1, 4, 4, 17], [337, 8, 508, 33], [7, 6, 834, 835], [739, 738, 538, 115], [272, 837, 275, 838], [311, 312, 722, 305]];
 
sub<GL(2,Integers(840))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 840=23357 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 , index 4848, genus 00, and generators

(716839337834),(1081),(83388329),(1801),(14417),(337850833),(76834835),(739738538115),(272837275838),(311312722305)\left(\begin{array}{rr} 716 & 839 \\ 337 & 834 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 833 & 8 \\ 832 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 337 & 8 \\ 508 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 834 & 835 \end{array}\right),\left(\begin{array}{rr} 739 & 738 \\ 538 & 115 \end{array}\right),\left(\begin{array}{rr} 272 & 837 \\ 275 & 838 \end{array}\right),\left(\begin{array}{rr} 311 & 312 \\ 722 & 305 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[840])K:=\Q(E[840]) is a degree-14863564801486356480 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/840Z)\GL_2(\Z/840\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 441=3272 441 = 3^{2} \cdot 7^{2}
33 additive 66 3920=24572 3920 = 2^{4} \cdot 5 \cdot 7^{2}
55 nonsplit multiplicative 66 7056=243272 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2}
77 additive 3232 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 35280bs consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 840h1, its twist by 84-84.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(21)\Q(\sqrt{21}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(7)\Q(\sqrt{7}) Z/4Z\Z/4\Z not in database
22 Q(3)\Q(\sqrt{3}) Z/4Z\Z/4\Z not in database
44 Q(3,7)\Q(\sqrt{3}, \sqrt{7}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.21956126976.2 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.8.4480842240000.3 Z/8Z\Z/8\Z not in database
88 8.0.1524731040000.50 Z/8Z\Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add nonsplit add ord ord ord ord ord ord ord ord ord ord ss
λ\lambda-invariant(s) - - 1 - 1 1 1 1 1 1 1 1 1 1 1,1
μ\mu-invariant(s) - - 0 - 0 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.