Properties

Label 35280h
Number of curves $2$
Conductor $35280$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 35280h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35280.x2 35280h1 \([0, 0, 0, -546903, -155673098]\) \(7630566466251024/78125\) \(185220000000\) \([2]\) \(172032\) \(1.7364\) \(\Gamma_0(N)\)-optimal
35280.x1 35280h2 \([0, 0, 0, -547323, -155422022]\) \(1912039973861076/6103515625\) \(57881250000000000\) \([2]\) \(344064\) \(2.0829\)  

Rank

sage: E.rank()
 

The elliptic curves in class 35280h have rank \(0\).

Complex multiplication

The elliptic curves in class 35280h do not have complex multiplication.

Modular form 35280.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{11} + 2 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.