sage:E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 35378o
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
35378.n2 |
35378o1 |
[1,0,0,−274548,55364840] |
−413493625/152 |
−841304929772888 |
[] |
272160 |
1.8317
|
Γ0(N)-optimal |
35378.n3 |
35378o2 |
[1,0,0,167677,210479681] |
94196375/3511808 |
−19437509097472804352 |
[] |
816480 |
2.3810
|
|
35378.n1 |
35378o3 |
[1,0,0,−1512778,−5760849116] |
−69173457625/2550136832 |
−14114754528664572919808 |
[] |
2449440 |
2.9303
|
|
sage:E.rank()
The elliptic curves in class 35378o have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
7 | 1 |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−T+3T2 |
1.3.ab
|
5 |
1+5T2 |
1.5.a
|
11 |
1−3T+11T2 |
1.11.ad
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−6T+17T2 |
1.17.ag
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1+29T2 |
1.29.a
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 35378o do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.