Show commands:
SageMath
E = EllipticCurve("o1")
E.isogeny_class()
Elliptic curves in class 35378o
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
35378.n2 | 35378o1 | \([1, 0, 0, -274548, 55364840]\) | \(-413493625/152\) | \(-841304929772888\) | \([]\) | \(272160\) | \(1.8317\) | \(\Gamma_0(N)\)-optimal |
35378.n3 | 35378o2 | \([1, 0, 0, 167677, 210479681]\) | \(94196375/3511808\) | \(-19437509097472804352\) | \([]\) | \(816480\) | \(2.3810\) | |
35378.n1 | 35378o3 | \([1, 0, 0, -1512778, -5760849116]\) | \(-69173457625/2550136832\) | \(-14114754528664572919808\) | \([]\) | \(2449440\) | \(2.9303\) |
Rank
sage: E.rank()
The elliptic curves in class 35378o have rank \(0\).
Complex multiplication
The elliptic curves in class 35378o do not have complex multiplication.Modular form 35378.2.a.o
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.