Properties

Label 35378o
Number of curves 33
Conductor 3537835378
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("o1")
 
E.isogeny_class()
 

Elliptic curves in class 35378o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35378.n2 35378o1 [1,0,0,274548,55364840][1, 0, 0, -274548, 55364840] 413493625/152-413493625/152 841304929772888-841304929772888 [][] 272160272160 1.83171.8317 Γ0(N)\Gamma_0(N)-optimal
35378.n3 35378o2 [1,0,0,167677,210479681][1, 0, 0, 167677, 210479681] 94196375/351180894196375/3511808 19437509097472804352-19437509097472804352 [][] 816480816480 2.38102.3810  
35378.n1 35378o3 [1,0,0,1512778,5760849116][1, 0, 0, -1512778, -5760849116] 69173457625/2550136832-69173457625/2550136832 14114754528664572919808-14114754528664572919808 [][] 24494402449440 2.93032.9303  

Rank

sage: E.rank()
 

The elliptic curves in class 35378o have rank 00.

Complex multiplication

The elliptic curves in class 35378o do not have complex multiplication.

Modular form 35378.2.a.o

sage: E.q_eigenform(10)
 
q+q2+q3+q4+q6+q82q96q11+q12+5q13+q163q172q18+O(q20)q + q^{2} + q^{3} + q^{4} + q^{6} + q^{8} - 2 q^{9} - 6 q^{11} + q^{12} + 5 q^{13} + q^{16} - 3 q^{17} - 2 q^{18} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.