sage:E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 355570.l
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
355570.l1 |
355570l1 |
[1,1,0,−51433,−4511217] |
−16954786009/370 |
−328376361970 |
[] |
1078920 |
1.3258
|
Γ0(N)-optimal |
355570.l2 |
355570l2 |
[1,1,0,−17798,−10249348] |
−702595369/50653000 |
−44954723953693000 |
[] |
3236760 |
1.8751
|
|
355570.l3 |
355570l3 |
[1,1,0,159987,274668893] |
510273943271/37000000000 |
−32837636197000000000 |
[] |
9710280 |
2.4244
|
|
sage:E.rank()
The elliptic curves in class 355570.l have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
5 | 1+T |
31 | 1 |
37 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−2T+3T2 |
1.3.ac
|
7 |
1+T+7T2 |
1.7.b
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1−4T+13T2 |
1.13.ae
|
17 |
1+3T+17T2 |
1.17.d
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 355570.l do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎛139313931⎠⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.