Properties

Label 355570.l
Number of curves 33
Conductor 355570355570
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Elliptic curves in class 355570.l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
355570.l1 355570l1 [1,1,0,51433,4511217][1, 1, 0, -51433, -4511217] 16954786009/370-16954786009/370 328376361970-328376361970 [][] 10789201078920 1.32581.3258 Γ0(N)\Gamma_0(N)-optimal
355570.l2 355570l2 [1,1,0,17798,10249348][1, 1, 0, -17798, -10249348] 702595369/50653000-702595369/50653000 44954723953693000-44954723953693000 [][] 32367603236760 1.87511.8751  
355570.l3 355570l3 [1,1,0,159987,274668893][1, 1, 0, 159987, 274668893] 510273943271/37000000000510273943271/37000000000 32837636197000000000-32837636197000000000 [][] 97102809710280 2.42442.4244  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 355570.l have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221+T1 + T
551+T1 + T
313111
37371+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 12T+3T2 1 - 2 T + 3 T^{2} 1.3.ac
77 1+T+7T2 1 + T + 7 T^{2} 1.7.b
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 14T+13T2 1 - 4 T + 13 T^{2} 1.13.ae
1717 1+3T+17T2 1 + 3 T + 17 T^{2} 1.17.d
1919 12T+19T2 1 - 2 T + 19 T^{2} 1.19.ac
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 1+3T+29T2 1 + 3 T + 29 T^{2} 1.29.d
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 355570.l do not have complex multiplication.

Modular form 355570.2.a.l

Copy content sage:E.q_eigenform(10)
 
qq2+2q3+q4q52q6q7q8+q9+q103q11+2q12+4q13+q142q15+q163q17q18+2q19+O(q20)q - q^{2} + 2 q^{3} + q^{4} - q^{5} - 2 q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - 3 q^{11} + 2 q^{12} + 4 q^{13} + q^{14} - 2 q^{15} + q^{16} - 3 q^{17} - q^{18} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.