Show commands:
SageMath
E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 355570.l
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
355570.l1 | 355570l1 | \([1, 1, 0, -51433, -4511217]\) | \(-16954786009/370\) | \(-328376361970\) | \([]\) | \(1078920\) | \(1.3258\) | \(\Gamma_0(N)\)-optimal |
355570.l2 | 355570l2 | \([1, 1, 0, -17798, -10249348]\) | \(-702595369/50653000\) | \(-44954723953693000\) | \([]\) | \(3236760\) | \(1.8751\) | |
355570.l3 | 355570l3 | \([1, 1, 0, 159987, 274668893]\) | \(510273943271/37000000000\) | \(-32837636197000000000\) | \([]\) | \(9710280\) | \(2.4244\) |
Rank
sage: E.rank()
The elliptic curves in class 355570.l have rank \(0\).
Complex multiplication
The elliptic curves in class 355570.l do not have complex multiplication.Modular form 355570.2.a.l
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.