Properties

Label 35600.bb2
Conductor 3560035600
Discriminant 1.874×10191.874\times 10^{19}
j-invariant 799052001908021545182978460024832 \frac{799052001908021545}{182978460024832}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2904448x+257063348y^2=x^3+x^2-904448x+257063348 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z904448xz2+257063348z3y^2z=x^3+x^2z-904448xz^2+257063348z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x373260315x+187618961610y^2=x^3-73260315x+187618961610 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -904448, 257063348])
 
gp: E = ellinit([0, 1, 0, -904448, 257063348])
 
magma: E := EllipticCurve([0, 1, 0, -904448, 257063348]);
 
oscar: E = elliptic_curve([0, 1, 0, -904448, 257063348])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(53258/49,8111104/343)(53258/49, 8111104/343)1.65268408734199974659544471551.6526840873419997465954447155\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  35600 35600  = 2452892^{4} \cdot 5^{2} \cdot 89
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1873699430654279680018736994306542796800 = 227528952^{27} \cdot 5^{2} \cdot 89^{5}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  799052001908021545182978460024832 \frac{799052001908021545}{182978460024832}  = 21558954213128932^{-15} \cdot 5 \cdot 89^{-5} \cdot 421^{3} \cdot 1289^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.41051132469641202739849458952.4105113246964120273984945895
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.44912449206411665554780257921.4491244920641166555478025792
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9944240170094930.994424017009493
Szpiro ratio: σm\sigma_{m} ≈ 5.0341924025855455.034192402585545

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.65268408734199974659544471551.6526840873419997465954447155
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.204844205942162170978535616080.20484420594216217097853561608
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 20 20  = 2215 2^{2}\cdot1\cdot5
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 6.77085519089637857746727168706.7708551908963785774672716870
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.770855191L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2048441.65268420126.770855191\displaystyle 6.770855191 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.204844 \cdot 1.652684 \cdot 20}{1^2} \approx 6.770855191

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   35600.2.a.bb

q+q3+2q72q92q11q13+3q17+O(q20) q + q^{3} + 2 q^{7} - 2 q^{9} - 2 q^{11} - q^{13} + 3 q^{17} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 518400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I19I_{19}^{*} additive -1 4 27 15
55 11 IIII additive 1 2 2 0
8989 55 I5I_{5} split multiplicative -1 1 5 5

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
55 5B.4.1 5.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[6, 13, 3505, 3441], [889, 3550, 0, 3559], [6, 5, 1775, 3556], [1, 0, 10, 1], [1086, 5, 875, 3556], [2671, 1790, 0, 1247], [3551, 10, 3550, 11], [1, 10, 0, 1]]
 
GL(2,Integers(3560)).subgroup(gens)
 
Gens := [[6, 13, 3505, 3441], [889, 3550, 0, 3559], [6, 5, 1775, 3556], [1, 0, 10, 1], [1086, 5, 875, 3556], [2671, 1790, 0, 1247], [3551, 10, 3550, 11], [1, 10, 0, 1]];
 
sub<GL(2,Integers(3560))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 3560=23589 3560 = 2^{3} \cdot 5 \cdot 89 , index 4848, genus 11, and generators

(61335053441),(889355003559),(6517753556),(10101),(108658753556),(2671179001247),(355110355011),(11001)\left(\begin{array}{rr} 6 & 13 \\ 3505 & 3441 \end{array}\right),\left(\begin{array}{rr} 889 & 3550 \\ 0 & 3559 \end{array}\right),\left(\begin{array}{rr} 6 & 5 \\ 1775 & 3556 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1086 & 5 \\ 875 & 3556 \end{array}\right),\left(\begin{array}{rr} 2671 & 1790 \\ 0 & 1247 \end{array}\right),\left(\begin{array}{rr} 3551 & 10 \\ 3550 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[3560])K:=\Q(E[3560]) is a degree-952772198400952772198400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/3560Z)\GL_2(\Z/3560\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 2225=5289 2225 = 5^{2} \cdot 89
55 additive 1010 16=24 16 = 2^{4}
8989 split multiplicative 9090 400=2452 400 = 2^{4} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 5.
Its isogeny class 35600.bb consists of 2 curves linked by isogenies of degree 5.

Twists

The minimal quadratic twist of this elliptic curve is 4450.j2, its twist by 4-4.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(1)\Q(\sqrt{-1}) Z/5Z\Z/5\Z not in database
33 3.3.17800.1 Z/2Z\Z/2\Z not in database
66 6.6.225590080000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.5069440000.4 Z/10Z\Z/10\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/2ZZ/10Z\Z/2\Z \oplus \Z/10\Z not in database
1616 deg 16 Z/15Z\Z/15\Z not in database
2020 20.4.4882812500000000000000000000.1 Z/5Z\Z/5\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 89
Reduction type add ord add ord ord ord ord ss ord ord ord ord ord ord ord split
λ\lambda-invariant(s) - 1 - 1 1 1 1 3,1 1 1 1 1 1 1 1 2
μ\mu-invariant(s) - 0 - 0 0 0 0 0,0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.