Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+270000\) | (homogenize, simplify) |
\(y^2z=x^3+270000z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+270000\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(-39, 459\right)\) |
$\hat{h}(P)$ | ≈ | $3.0224353582450591452607257417$ |
Integral points
\((-39,\pm 459)\)
Invariants
Conductor: | \( 3600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-31492800000000 $ | = | $-1 \cdot 2^{12} \cdot 3^{9} \cdot 5^{8} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( 0 \) | = | $0$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z[(1+\sqrt{-3})/2]\) | (potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $N(\mathrm{U}(1))$ | |||
Faltings height: | $1.2689475769223899127076364088\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-1.3211174284280379149898691958\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $\dots$ | |||
Szpiro ratio: | $4.705942480895523\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $3.0224353582450591452607257417\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.52323692057774154662187721140\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 1\cdot2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 3.1628995389868556616424054474 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 3.162899539 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.523237 \cdot 3.022435 \cdot 2}{1^2} \approx 3.162899539$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8640 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5Ns.2.1 | 5.30.0.2 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 75 = 3 \cdot 5^{2} \) |
$3$ | additive | $2$ | \( 400 = 2^{4} \cdot 5^{2} \) |
$5$ | additive | $10$ | \( 144 = 2^{4} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 3600.b
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 225.c2, its twist by $60$.
The minimal sextic twist of this elliptic curve is 27.a4, its sextic twist by $675$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.300.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.270000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.29160000.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.2.4320000.2 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.14580000000.1 | \(\Z/5\Z\) | not in database |
$12$ | 12.2.8062156800000000.1 | \(\Z/12\Z\) | not in database |
$12$ | 12.0.7652750400000000.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/7\Z\) | not in database |
$12$ | 12.0.18662400000000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.212576400000000000000.2 | \(\Z/5\Z \oplus \Z/5\Z\) | not in database |
$16$ | 16.8.212576400000000000000.1 | \(\Z/15\Z\) | not in database |
$18$ | 18.6.39531097362172608000000000000.1 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.14281868906496000000000000.2 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ord | ss | ord | ss | ord | ss | ss | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | - | - | 1 | 1,1 | 1 | 1,1 | 3 | 1,1 | 1,1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | - | 0 | 0,0 | 0 | 0,0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.