Properties

Label 3600bf
Number of curves 88
Conductor 36003600
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bf1")
 
E.isogeny_class()
 

Elliptic curves in class 3600bf

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3600.u7 3600bf1 [0,0,0,75,40250][0, 0, 0, -75, 40250] 1/15-1/15 699840000000-699840000000 [2][2] 30723072 0.951750.95175 Γ0(N)\Gamma_0(N)-optimal
3600.u6 3600bf2 [0,0,0,18075,922250][0, 0, 0, -18075, 922250] 13997521/22513997521/225 1049760000000010497600000000 [2,2][2, 2] 61446144 1.29831.2983  
3600.u5 3600bf3 [0,0,0,36075,1219750][0, 0, 0, -36075, -1219750] 111284641/50625111284641/50625 23619600000000002361960000000000 [2,2][2, 2] 1228812288 1.64491.6449  
3600.u4 3600bf4 [0,0,0,288075,59512250][0, 0, 0, -288075, 59512250] 56667352321/1556667352321/15 699840000000699840000000 [4][4] 1228812288 1.64491.6449  
3600.u2 3600bf5 [0,0,0,486075,130369750][0, 0, 0, -486075, -130369750] 272223782641/164025272223782641/164025 76527504000000007652750400000000 [2,2][2, 2] 2457624576 1.99151.9915  
3600.u8 3600bf6 [0,0,0,125925,9157750][0, 0, 0, 125925, -9157750] 4733169839/35156254733169839/3515625 164025000000000000-164025000000000000 [2][2] 2457624576 1.99151.9915  
3600.u1 3600bf7 [0,0,0,7776075,8346199750][0, 0, 0, -7776075, -8346199750] 1114544804970241/4051114544804970241/405 1889568000000018895680000000 [2][2] 4915249152 2.33802.3380  
3600.u3 3600bf8 [0,0,0,396075,180139750][0, 0, 0, -396075, -180139750] 147281603041/215233605-147281603041/215233605 10041939074880000000-10041939074880000000 [2][2] 4915249152 2.33802.3380  

Rank

sage: E.rank()
 

The elliptic curves in class 3600bf have rank 11.

Complex multiplication

The elliptic curves in class 3600bf do not have complex multiplication.

Modular form 3600.2.a.bf

sage: E.q_eigenform(10)
 
q4q11+2q13+2q174q19+O(q20)q - 4 q^{11} + 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488161621224488421422444241881616842814228428418816841628141684162841)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.