Properties

Label 3600bf2
Conductor 36003600
Discriminant 1.050×10131.050\times 10^{13}
j-invariant 13997521225 \frac{13997521}{225}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x318075x+922250y^2=x^3-18075x+922250 Copy content Toggle raw display (homogenize, simplify)
y2z=x318075xz2+922250z3y^2z=x^3-18075xz^2+922250z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x318075x+922250y^2=x^3-18075x+922250 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -18075, 922250])
 
gp: E = ellinit([0, 0, 0, -18075, 922250])
 
magma: E := EllipticCurve([0, 0, 0, -18075, 922250]);
 
oscar: E = elliptic_curve([0, 0, 0, -18075, 922250])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(95,250)(95, 250)1.20048767730510226984034227291.2004876773051022698403422729\infty
(70,0)(70, 0)0022
(85,0)(85, 0)0022

Integral points

(155,0) \left(-155, 0\right) , (65,±1350)(-65,\pm 1350), (61,±216)(61,\pm 216), (70,0) \left(70, 0\right) , (85,0) \left(85, 0\right) , (95,±250)(95,\pm 250), (134,±952)(134,\pm 952), (445,±9000)(445,\pm 9000) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  3600 3600  = 2432522^{4} \cdot 3^{2} \cdot 5^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  1049760000000010497600000000 = 21238582^{12} \cdot 3^{8} \cdot 5^{8}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  13997521225 \frac{13997521}{225}  = 325224133^{-2} \cdot 5^{-2} \cdot 241^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.29832111874823390026302184861.2983211187482339002630218486
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.74885116236281644215221255793-0.74885116236281644215221255793
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.96229544108906240.9622954410890624
Szpiro ratio: σm\sigma_{m} ≈ 5.0094047472572465.009404747257246

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.20048767730510226984034227291.2004876773051022698403422729
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.723268301013547913204796993090.72326830101354791320479699309
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 222222 2^{2}\cdot2^{2}\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.47309873100864672077690305423.4730987310086467207769030542
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.473098731L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7232681.20048864423.473098731\displaystyle 3.473098731 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.723268 \cdot 1.200488 \cdot 64}{4^2} \approx 3.473098731

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   3600.2.a.u

q4q11+2q13+2q174q19+O(q20) q - 4 q^{11} + 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6144
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 4 12 0
33 44 I2I_{2}^{*} additive -1 2 8 2
55 44 I2I_{2}^{*} additive 1 2 8 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 16.96.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 16, 1], [179, 232, 70, 43], [1, 16, 0, 1], [5, 16, 4, 193], [79, 224, 234, 143], [1, 16, 4, 65], [225, 16, 224, 17], [225, 232, 32, 31]]
 
GL(2,Integers(240)).subgroup(gens)
 
Gens := [[1, 0, 16, 1], [179, 232, 70, 43], [1, 16, 0, 1], [5, 16, 4, 193], [79, 224, 234, 143], [1, 16, 4, 65], [225, 16, 224, 17], [225, 232, 32, 31]];
 
sub<GL(2,Integers(240))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 240=2435 240 = 2^{4} \cdot 3 \cdot 5 , index 768768, genus 1313, and generators

(10161),(1792327043),(11601),(5164193),(79224234143),(116465),(2251622417),(2252323231)\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 179 & 232 \\ 70 & 43 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 4 & 193 \end{array}\right),\left(\begin{array}{rr} 79 & 224 \\ 234 & 143 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right),\left(\begin{array}{rr} 225 & 232 \\ 32 & 31 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[240])K:=\Q(E[240]) is a degree-737280737280 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/240Z)\GL_2(\Z/240\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 225=3252 225 = 3^{2} \cdot 5^{2}
33 additive 88 400=2452 400 = 2^{4} \cdot 5^{2}
55 additive 1818 144=2432 144 = 2^{4} \cdot 3^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 3600bf consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 15a3, its twist by 6060.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(15)\Q(\sqrt{15}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z 2.2.60.1-15.1-c6
22 Q(15)\Q(\sqrt{-15}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(i,15)\Q(i, \sqrt{15}) Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
44 Q(3,5)\Q(\sqrt{3}, \sqrt{5}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.12960000.1 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
88 8.0.186624000000.39 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 Q(ζ60)+\Q(\zeta_{60})^+ Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
88 8.2.708588000000.3 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 Q(ζ60)\Q(\zeta_{60}) Z/4ZZ/16Z\Z/4\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ss ord ord ord ord ss ord ss ord ord ord ord
λ\lambda-invariant(s) - - - 1,1 1 1 1 1 1,1 1 1,1 1 1 1 1
μ\mu-invariant(s) - - - 0,0 0 0 0 0 0,0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.