Show commands:
SageMath
E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 360d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
360.e4 | 360d1 | -optimal | ||||||
360.e3 | 360d2 | |||||||
360.e2 | 360d3 | |||||||
360.e1 | 360d4 |
Rank
sage: E.rank()
The elliptic curves in class 360d have rank .
Complex multiplication
The elliptic curves in class 360d do not have complex multiplication.Modular form 360.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The entry is the smallest degree of a cyclic isogeny between the -th and -th curve in the isogeny class, in the Cremona numbering.
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.