Properties

Label 360d
Number of curves 44
Conductor 360360
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 360d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
360.e4 360d1 [0,0,0,33,34][0, 0, 0, 33, 34] 21296/1521296/15 2799360-2799360 [4][4] 6464 0.074438-0.074438 Γ0(N)\Gamma_0(N)-optimal
360.e3 360d2 [0,0,0,147,286][0, 0, 0, -147, 286] 470596/225470596/225 167961600167961600 [2,2][2, 2] 128128 0.272140.27214  
360.e2 360d3 [0,0,0,1227,16346][0, 0, 0, -1227, -16346] 136835858/1875136835858/1875 27993600002799360000 [2][2] 256256 0.618710.61871  
360.e1 360d4 [0,0,0,1947,33046][0, 0, 0, -1947, 33046] 546718898/405546718898/405 604661760604661760 [2][2] 256256 0.618710.61871  

Rank

sage: E.rank()
 

The elliptic curves in class 360d have rank 00.

Complex multiplication

The elliptic curves in class 360d do not have complex multiplication.

Modular form 360.2.a.d

sage: E.q_eigenform(10)
 
q+q5+4q76q13+2q17+4q19+O(q20)q + q^{5} + 4 q^{7} - 6 q^{13} + 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.