Properties

Label 364364be3
Conductor 364364364364
Discriminant 4.086×10234.086\times 10^{23}
j-invariant 9240169676800044971379453 \frac{92401696768000}{44971379453}
CM no
Rank 00
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x219653573x+13378612766y^2=x^3-x^2-19653573x+13378612766 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z19653573xz2+13378612766z3y^2z=x^3-x^2z-19653573xz^2+13378612766z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31591939440x+9748232888121y^2=x^3-1591939440x+9748232888121 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -19653573, 13378612766])
 
gp: E = ellinit([0, -1, 0, -19653573, 13378612766])
 
magma: E := EllipticCurve([0, -1, 0, -19653573, 13378612766]);
 
oscar: E = elliptic_curve([0, -1, 0, -19653573, 13378612766])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2Z\Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(698,0)(698, 0)0022

Integral points

(698,0) \left(698, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  364364 364364  = 2272111322^{2} \cdot 7^{2} \cdot 11 \cdot 13^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  408605817811633691417168408605817811633691417168 = 247711313122^{4} \cdot 7^{7} \cdot 11^{3} \cdot 13^{12}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  9240169676800044971379453 \frac{92401696768000}{44971379453}  = 22053711131368932^{20} \cdot 5^{3} \cdot 7^{-1} \cdot 11^{-3} \cdot 13^{-6} \cdot 89^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 3.22403487217837086319749148053.2240348721783708631974914805
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.737556058733297406145660680840.73755605873329740614566068084
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00430453692545421.0043045369254542
Szpiro ratio: σm\sigma_{m} ≈ 4.84111779399538564.8411177939953856

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0841130598544184415903937850860.084113059854418441590393785086
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 72 72  = 32322 3\cdot2\cdot3\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.51403507737953194862708813161.5140350773795319486270881316
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.514035077L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0841131.00000072221.514035077\displaystyle 1.514035077 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.084113 \cdot 1.000000 \cdot 72}{2^2} \approx 1.514035077

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 364364.2.a.be

q+2q3+q9+q116q174q19+O(q20) q + 2 q^{3} + q^{9} + q^{11} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 33094656
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 33 IVIV additive -1 2 4 0
77 22 I1I_{1}^{*} additive -1 2 7 1
1111 33 I3I_{3} split multiplicative -1 1 3 3
1313 44 I6I_{6}^{*} additive 1 2 12 6

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1
33 3B 3.4.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1706, 12009, 8607, 8], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [8009, 12, 8008, 1], [11087, 12000, 6462, 11939]]
 
GL(2,Integers(12012)).subgroup(gens)
 
Gens := [[1706, 12009, 8607, 8], [12001, 12, 12000, 13], [11, 2, 11962, 12003], [1, 0, 12, 1], [1, 6, 6, 37], [7654, 3, 2157, 12004], [7011, 11014, 1022, 5021], [1, 12, 0, 1], [8009, 12, 8008, 1], [11087, 12000, 6462, 11939]];
 
sub<GL(2,Integers(12012))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 12012=22371113 12012 = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 13 , index 9696, genus 11, and generators

(17061200986078),(12001121200013),(1121196212003),(10121),(16637),(76543215712004),(70111101410225021),(11201),(80091280081),(1108712000646211939)\left(\begin{array}{rr} 1706 & 12009 \\ 8607 & 8 \end{array}\right),\left(\begin{array}{rr} 12001 & 12 \\ 12000 & 13 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11962 & 12003 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 7654 & 3 \\ 2157 & 12004 \end{array}\right),\left(\begin{array}{rr} 7011 & 11014 \\ 1022 & 5021 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 8009 & 12 \\ 8008 & 1 \end{array}\right),\left(\begin{array}{rr} 11087 & 12000 \\ 6462 & 11939 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[12012])K:=\Q(E[12012]) is a degree-3347646382080033476463820800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/12012Z)\GL_2(\Z/12012\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 91091=7211132 91091 = 7^{2} \cdot 11 \cdot 13^{2}
33 good 22 33124=2272132 33124 = 2^{2} \cdot 7^{2} \cdot 13^{2}
77 additive 3232 7436=2211132 7436 = 2^{2} \cdot 11 \cdot 13^{2}
1111 split multiplicative 1212 33124=2272132 33124 = 2^{2} \cdot 7^{2} \cdot 13^{2}
1313 additive 9898 2156=227211 2156 = 2^{2} \cdot 7^{2} \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 3 and 6.
Its isogeny class 364364be consists of 4 curves linked by isogenies of degrees dividing 6.

Twists

The minimal quadratic twist of this elliptic curve is 4004b3, its twist by 91-91.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(77)\Q(\sqrt{77}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(273)\Q(\sqrt{273}) Z/6Z\Z/6\Z not in database
44 4.0.832832.3 Z/4Z\Z/4\Z not in database
44 Q(77,273)\Q(\sqrt{77}, \sqrt{273}) Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
66 6.0.430692955056.4 Z/6Z\Z/6\Z not in database
88 8.0.4112408592388096.115 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/12Z\Z/12\Z not in database
1212 deg 12 Z/3ZZ/6Z\Z/3\Z \oplus \Z/6\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database
1818 18.6.486150629101231105150873821111256283726300683962331435008.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.