Properties

Label 36518a
Number of curves 33
Conductor 3651836518
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 36518a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
36518.a2 36518a1 [1,1,0,14915,707579][1, 1, 0, -14915, -707579] 413493625/152-413493625/152 134900559512-134900559512 [][] 6048060480 1.10361.1036 Γ0(N)\Gamma_0(N)-optimal
36518.a3 36518a2 [1,1,0,9110,2661292][1, 1, 0, 9110, -2661292] 94196375/351180894196375/3511808 3116742526965248-3116742526965248 [][] 181440181440 1.65291.6529  
36518.a1 36518a3 [1,1,0,82185,72912709][1, 1, 0, -82185, 72912709] 69173457625/2550136832-69173457625/2550136832 2263255825453678592-2263255825453678592 [][] 544320544320 2.20222.2022  

Rank

sage: E.rank()
 

The elliptic curves in class 36518a have rank 11.

Complex multiplication

The elliptic curves in class 36518a do not have complex multiplication.

Modular form 36518.2.a.a

sage: E.q_eigenform(10)
 
qq2q3+q4+q6q7q82q9+6q11q125q13+q14+q163q17+2q18+q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} - 2 q^{9} + 6 q^{11} - q^{12} - 5 q^{13} + q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(139313931)\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.