Properties

Label 36518a3
Conductor 3651836518
Discriminant 2.263×1018-2.263\times 10^{18}
j-invariant 691734576252550136832 -\frac{69173457625}{2550136832}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x282185x+72912709y^2+xy=x^3+x^2-82185x+72912709 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z82185xz2+72912709z3y^2z+xyz=x^3+x^2z-82185xz^2+72912709z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3106512435x+3403413034254y^2=x^3-106512435x+3403413034254 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -82185, 72912709])
 
gp: E = ellinit([1, 1, 0, -82185, 72912709])
 
magma: E := EllipticCurve([1, 1, 0, -82185, 72912709]);
 
oscar: E = elliptic_curve([1, 1, 0, -82185, 72912709])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6899/16,354953/64)(-6899/16, 354953/64)5.98488678439508124157909312205.9848867843950812415790931220\infty

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  36518 36518  = 2193122 \cdot 19 \cdot 31^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2263255825453678592-2263255825453678592 = 122719316-1 \cdot 2^{27} \cdot 19 \cdot 31^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  691734576252550136832 -\frac{69173457625}{2550136832}  = 1227531918213-1 \cdot 2^{-27} \cdot 5^{3} \cdot 19^{-1} \cdot 821^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.20216321319981670391654408232.2021632131998167039165440823
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.485169610957243580951961920030.48516961095724358095196192003
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0546212664168181.054621266416818
Szpiro ratio: σm\sigma_{m} ≈ 4.7340293111405984.734029311140598

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.98488678439508124157909312205.9848867843950812415790931220
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.215998321694619711654377615000.21599832169461971165437761500
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 112 1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.58545100192329376260057216982.5854510019232937626005721698
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.585451002L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2159985.9848872122.585451002\displaystyle 2.585451002 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.215998 \cdot 5.984887 \cdot 2}{1^2} \approx 2.585451002

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   36518.2.a.a

qq2q3+q4+q6q7q82q9+6q11q125q13+q14+q163q17+2q18+q19+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} - 2 q^{9} + 6 q^{11} - q^{12} - 5 q^{13} + q^{14} + q^{16} - 3 q^{17} + 2 q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 544320
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I27I_{27} nonsplit multiplicative 1 1 27 27
1919 11 I1I_{1} split multiplicative -1 1 1 1
3131 22 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
33 3B 27.36.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[127171, 54, 127170, 55], [31807, 45198, 0, 1], [20519, 0, 0, 127223], [22693, 114948, 61163, 74401], [1, 54, 0, 1], [63613, 45198, 92349, 25111], [62497, 69843, 104253, 43184], [1, 0, 54, 1], [31, 36, 121402, 120463], [28, 27, 729, 703]]
 
GL(2,Integers(127224)).subgroup(gens)
 
Gens := [[127171, 54, 127170, 55], [31807, 45198, 0, 1], [20519, 0, 0, 127223], [22693, 114948, 61163, 74401], [1, 54, 0, 1], [63613, 45198, 92349, 25111], [62497, 69843, 104253, 43184], [1, 0, 54, 1], [31, 36, 121402, 120463], [28, 27, 729, 703]];
 
sub<GL(2,Integers(127224))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 127224=23331931 127224 = 2^{3} \cdot 3^{3} \cdot 19 \cdot 31 , index 12961296, genus 4343, and generators

(1271715412717055),(318074519801),(2051900127223),(226931149486116374401),(15401),(63613451989234925111),(624976984310425343184),(10541),(3136121402120463),(2827729703)\left(\begin{array}{rr} 127171 & 54 \\ 127170 & 55 \end{array}\right),\left(\begin{array}{rr} 31807 & 45198 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 20519 & 0 \\ 0 & 127223 \end{array}\right),\left(\begin{array}{rr} 22693 & 114948 \\ 61163 & 74401 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 63613 & 45198 \\ 92349 & 25111 \end{array}\right),\left(\begin{array}{rr} 62497 & 69843 \\ 104253 & 43184 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 121402 & 120463 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[127224])K:=\Q(E[127224]) is a degree-4102799346892800041027993468928000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/127224Z)\GL_2(\Z/127224\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 18259=19312 18259 = 19 \cdot 31^{2}
33 good 22 18259=19312 18259 = 19 \cdot 31^{2}
1919 split multiplicative 2020 1922=2312 1922 = 2 \cdot 31^{2}
3131 additive 482482 38=219 38 = 2 \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3 and 9.
Its isogeny class 36518a consists of 3 curves linked by isogenies of degrees dividing 9.

Twists

The minimal quadratic twist of this elliptic curve is 38a2, its twist by 31-31.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(93)\Q(\sqrt{93}) Z/3Z\Z/3\Z not in database
33 3.1.152.1 Z/2Z\Z/2\Z not in database
66 6.0.3511808.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
66 6.0.34941536199.1 Z/3Z\Z/3\Z not in database
66 6.6.76417139667213.2 Z/9Z\Z/9\Z not in database
66 6.2.18583864128.1 Z/6Z\Z/6\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database
1212 deg 12 Z/3ZZ/3Z\Z/3\Z \oplus \Z/3\Z not in database
1212 12.0.44809196023038025892889.2 Z/9Z\Z/9\Z not in database
1212 deg 12 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1818 18.0.4037133474088127555986596216224937148416.1 Z/6Z\Z/6\Z not in database
1818 18.6.42229842066616262584536953555456201868906991976448.1 Z/18Z\Z/18\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit ord ss ord ord ord ord split ord ord add ord ss ord ss
λ\lambda-invariant(s) 17 5 1,1 1 1 1 1 2 1 1 - 1 1,3 1 1,1
μ\mu-invariant(s) 0 0 0,0 0 0 0 0 0 0 0 - 0 0,0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.