Properties

Label 365904.a1
Conductor 365904365904
Discriminant 2060771328-2060771328
j-invariant 261096963314 -\frac{2610969633}{14}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x315147x+717530y^2=x^3-15147x+717530 Copy content Toggle raw display (homogenize, simplify)
y2z=x315147xz2+717530z3y^2z=x^3-15147xz^2+717530z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x315147x+717530y^2=x^3-15147x+717530 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -15147, 717530])
 
gp: E = ellinit([0, 0, 0, -15147, 717530])
 
magma: E := EllipticCurve([0, 0, 0, -15147, 717530]);
 
oscar: E = elliptic_curve([0, 0, 0, -15147, 717530])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(77,88)(77, 88)0.326042276814327910567834801900.32604227681432791056783480190\infty

Integral points

(106,±1064)(-106,\pm 1064), (71,±2)(71,\pm 2), (77,±88)(77,\pm 88) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  365904 365904  = 243371122^{4} \cdot 3^{3} \cdot 7 \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  2060771328-2060771328 = 1213337113-1 \cdot 2^{13} \cdot 3^{3} \cdot 7 \cdot 11^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  261096963314 -\frac{2610969633}{14}  = 12131271173-1 \cdot 2^{-1} \cdot 3^{12} \cdot 7^{-1} \cdot 17^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.981877167195995982120781969400.98187716719599598212078196940
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.58539690373056938616074735578-0.58539690373056938616074735578
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.08393060730232361.0839306073023236
Szpiro ratio: σm\sigma_{m} ≈ 3.16080300214112553.1608030021411255

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.326042276814327910567834801900.32604227681432791056783480190
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.30435125829077487455537521741.3043512582907748745553752174
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 22112 2^{2}\cdot1\cdot1\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 3.40218923215006195771281550513.4021892321500619577128155051
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

3.402189232L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.3043510.3260428123.402189232\displaystyle 3.402189232 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.304351 \cdot 0.326042 \cdot 8}{1^2} \approx 3.402189232

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 365904.2.a.a

q4q5q76q134q19+O(q20) q - 4 q^{5} - q^{7} - 6 q^{13} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 725760
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I5I_{5}^{*} additive -1 4 13 1
33 11 IIII additive -1 3 3 0
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
1111 22 IIIIII additive 1 2 3 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1847, 2, 1846, 3], [1, 1, 1847, 0], [1, 0, 2, 1], [1, 2, 0, 1], [463, 2, 0, 1], [617, 2, 617, 3], [1585, 2, 1585, 3], [925, 2, 925, 3], [673, 2, 673, 3]]
 
GL(2,Integers(1848)).subgroup(gens)
 
Gens := [[1847, 2, 1846, 3], [1, 1, 1847, 0], [1, 0, 2, 1], [1, 2, 0, 1], [463, 2, 0, 1], [617, 2, 617, 3], [1585, 2, 1585, 3], [925, 2, 925, 3], [673, 2, 673, 3]];
 
sub<GL(2,Integers(1848))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1848=233711 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 , index 22, genus 00, and generators

(1847218463),(1118470),(1021),(1201),(463201),(61726173),(1585215853),(92529253),(67326733)\left(\begin{array}{rr} 1847 & 2 \\ 1846 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1847 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 463 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 617 & 2 \\ 617 & 3 \end{array}\right),\left(\begin{array}{rr} 1585 & 2 \\ 1585 & 3 \end{array}\right),\left(\begin{array}{rr} 925 & 2 \\ 925 & 3 \end{array}\right),\left(\begin{array}{rr} 673 & 2 \\ 673 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1848])K:=\Q(E[1848]) is a degree-980995276800980995276800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1848Z)\GL_2(\Z/1848\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 44 2079=33711 2079 = 3^{3} \cdot 7 \cdot 11
33 additive 66 13552=247112 13552 = 2^{4} \cdot 7 \cdot 11^{2}
77 nonsplit multiplicative 88 52272=2433112 52272 = 2^{4} \cdot 3^{3} \cdot 11^{2}
1111 additive 4242 3024=24337 3024 = 2^{4} \cdot 3^{3} \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 365904.a consists of this curve only.

Twists

The minimal quadratic twist of this elliptic curve is 45738.bu1, its twist by 1212.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.16632.1 Z/2Z\Z/2\Z not in database
66 6.0.511200087552.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.