Show commands:
SageMath
E = EllipticCurve("bl1")
E.isogeny_class()
Elliptic curves in class 367575bl
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
367575.bl2 | 367575bl1 | \([1, 1, 0, -3045, 28800]\) | \(5177717/2349\) | \(1417271792625\) | \([2]\) | \(414720\) | \(1.0268\) | \(\Gamma_0(N)\)-optimal |
367575.bl1 | 367575bl2 | \([1, 1, 0, -41070, 3184875]\) | \(12698260037/7569\) | \(4566764665125\) | \([2]\) | \(829440\) | \(1.3733\) |
Rank
sage: E.rank()
The elliptic curves in class 367575bl have rank \(1\).
Complex multiplication
The elliptic curves in class 367575bl do not have complex multiplication.Modular form 367575.2.a.bl
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.