Properties

Label 368.e
Number of curves $1$
Conductor $368$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 368.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
368.e1 368d1 \([0, 1, 0, 0, -1]\) \(-256/23\) \(-368\) \([]\) \(16\) \(-0.82806\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 368.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 368.e do not have complex multiplication.

Modular form 368.2.a.e

sage: E.q_eigenform(10)
 
\(q + q^{3} - 4 q^{5} - 2 q^{7} - 2 q^{9} + 4 q^{11} - 5 q^{13} - 4 q^{15} - 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display