Properties

Label 368.e
Number of curves 11
Conductor 368368
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 368.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
368.e1 368d1 [0,1,0,0,1][0, 1, 0, 0, -1] 256/23-256/23 368-368 [][] 1616 0.82806-0.82806 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 368.e1 has rank 11.

Complex multiplication

The elliptic curves in class 368.e do not have complex multiplication.

Modular form 368.2.a.e

sage: E.q_eigenform(10)
 
q+q34q52q72q9+4q115q134q152q176q19+O(q20)q + q^{3} - 4 q^{5} - 2 q^{7} - 2 q^{9} + 4 q^{11} - 5 q^{13} - 4 q^{15} - 2 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display