Properties

Label 37026bj
Number of curves 66
Conductor 3702637026
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bj1")
 
E.isogeny_class()
 

Elliptic curves in class 37026bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
37026.bm5 37026bj1 [1,1,1,37049,2554841][1, -1, 1, -37049, 2554841] 4354703137/3525124354703137/352512 455257956688128455257956688128 [2][2] 163840163840 1.55561.5556 Γ0(N)\Gamma_0(N)-optimal
37026.bm4 37026bj2 [1,1,1,124169,13858567][1, -1, 1, -124169, -13858567] 163936758817/30338064163936758817/30338064 3918063789747201639180637897472016 [2,2][2, 2] 327680327680 1.90221.9022  
37026.bm6 37026bj3 [1,1,1,246091,80949679][1, -1, 1, 246091, -80949679] 1276229915423/29271770281276229915423/2927177028 3780355371254616132-3780355371254616132 [2][2] 655360655360 2.24882.2488  
37026.bm2 37026bj4 [1,1,1,1888349,998271007][1, -1, 1, -1888349, -998271007] 576615941610337/27060804576615941610337/27060804 3494816158138707634948161581387076 [2,2][2, 2] 655360655360 2.24882.2488  
37026.bm3 37026bj5 [1,1,1,1790339,1106591659][1, -1, 1, -1790339, -1106591659] 491411892194497/125563633938-491411892194497/125563633938 162161411302168331922-162161411302168331922 [2][2] 13107201310720 2.59532.5953  
37026.bm1 37026bj6 [1,1,1,30213239,63913516675][1, -1, 1, -30213239, -63913516675] 2361739090258884097/52022361739090258884097/5202 67182163747386718216374738 [2][2] 13107201310720 2.59532.5953  

Rank

sage: E.rank()
 

The elliptic curves in class 37026bj have rank 11.

Complex multiplication

The elliptic curves in class 37026bj do not have complex multiplication.

Modular form 37026.2.a.bj

sage: E.q_eigenform(10)
 
q+q2+q4+2q5+q8+2q10+2q13+q16+q174q19+O(q20)q + q^{2} + q^{4} + 2 q^{5} + q^{8} + 2 q^{10} + 2 q^{13} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421488424122848214848241)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.