Properties

Label 37026bj2
Conductor 3702637026
Discriminant 3.918×10163.918\times 10^{16}
j-invariant 16393675881730338064 \frac{163936758817}{30338064}
CM no
Rank 11
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3x2124169x13858567y^2+xy+y=x^3-x^2-124169x-13858567 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3x2z124169xz213858567z3y^2z+xyz+yz^2=x^3-x^2z-124169xz^2-13858567z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31986699x888934970y^2=x^3-1986699x-888934970 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, -1, 1, -124169, -13858567])
 
gp: E = ellinit([1, -1, 1, -124169, -13858567])
 
magma: E := EllipticCurve([1, -1, 1, -124169, -13858567]);
 
oscar: E = elliptic_curve([1, -1, 1, -124169, -13858567])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(179,1704)(-179, 1704)5.13081984779924167547955443635.1308198477992416754795544363\infty
(129,64)(-129, 64)0022
(399,200)(399, -200)0022

Integral points

(179,1704) \left(-179, 1704\right) , (179,1526) \left(-179, -1526\right) , (129,64) \left(-129, 64\right) , (399,200) \left(399, -200\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  37026 37026  = 232112172 \cdot 3^{2} \cdot 11^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  3918063789747201639180637897472016 = 243141161722^{4} \cdot 3^{14} \cdot 11^{6} \cdot 17^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  16393675881730338064 \frac{163936758817}{30338064}  = 243813317242132^{-4} \cdot 3^{-8} \cdot 13^{3} \cdot 17^{-2} \cdot 421^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.90218488581476706254918934271.9021848858147670625491893427
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.153931105081526944820594935260.15393110508152694482059493526
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.075708137601691.07570813760169
Szpiro ratio: σm\sigma_{m} ≈ 4.4491035884943274.449103588494327

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 5.13081984779924167547955443635.1308198477992416754795544363
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.257578865239847085812446437400.25757886523984708581244643740
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 128 128  = 2222222 2^{2}\cdot2^{2}\cdot2^{2}\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 10.57272603316970885563224039810.572726033169708855632240398
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

10.572726033L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2575795.1308201284210.572726033\displaystyle 10.572726033 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.257579 \cdot 5.130820 \cdot 128}{4^2} \approx 10.572726033

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   37026.2.a.bm

q+q2+q4+2q5+q8+2q10+2q13+q16+q174q19+O(q20) q + q^{2} + q^{4} + 2 q^{5} + q^{8} + 2 q^{10} + 2 q^{13} + q^{16} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 327680
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4} split multiplicative -1 1 4 4
33 44 I8I_{8}^{*} additive -1 2 14 8
1111 44 I0I_0^{*} additive -1 2 6 0
1717 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.48.0.89

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[4079, 0, 0, 4487], [463, 2178, 1782, 2443], [4357, 924, 2442, 1387], [1, 0, 8, 1], [1495, 0, 0, 4487], [4481, 8, 4480, 9], [5, 4, 4484, 4485], [1, 8, 0, 1], [2113, 3168, 4224, 3301]]
 
GL(2,Integers(4488)).subgroup(gens)
 
Gens := [[4079, 0, 0, 4487], [463, 2178, 1782, 2443], [4357, 924, 2442, 1387], [1, 0, 8, 1], [1495, 0, 0, 4487], [4481, 8, 4480, 9], [5, 4, 4484, 4485], [1, 8, 0, 1], [2113, 3168, 4224, 3301]];
 
sub<GL(2,Integers(4488))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 4488=2331117 4488 = 2^{3} \cdot 3 \cdot 11 \cdot 17 , index 192192, genus 11, and generators

(4079004487),(463217817822443),(435792424421387),(1081),(1495004487),(4481844809),(5444844485),(1801),(2113316842243301)\left(\begin{array}{rr} 4079 & 0 \\ 0 & 4487 \end{array}\right),\left(\begin{array}{rr} 463 & 2178 \\ 1782 & 2443 \end{array}\right),\left(\begin{array}{rr} 4357 & 924 \\ 2442 & 1387 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1495 & 0 \\ 0 & 4487 \end{array}\right),\left(\begin{array}{rr} 4481 & 8 \\ 4480 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 4484 & 4485 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2113 & 3168 \\ 4224 & 3301 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[4488])K:=\Q(E[4488]) is a degree-397069516800397069516800 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/4488Z)\GL_2(\Z/4488\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 split multiplicative 44 1089=32112 1089 = 3^{2} \cdot 11^{2}
33 additive 88 4114=211217 4114 = 2 \cdot 11^{2} \cdot 17
1111 additive 6262 306=23217 306 = 2 \cdot 3^{2} \cdot 17
1717 split multiplicative 1818 2178=232112 2178 = 2 \cdot 3^{2} \cdot 11^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 37026bj consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 102b2, its twist by 3333.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(33)\Q(\sqrt{33}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(17,33)\Q(\sqrt{-17}, \sqrt{-33}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(17,33)\Q(\sqrt{17}, \sqrt{-33}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,33)\Q(\sqrt{-2}, \sqrt{33}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.25356622807296.35 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.8.405705964916736.7 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type split add ord ss add ord split ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 4 - 1 1,1 - 1 2 1 1,1 1 1 1 1 1 1,1
μ\mu-invariant(s) 1 - 0 0,0 - 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.