Properties

Label 372240.du2
Conductor 372240372240
Discriminant 1.000×1020-1.000\times 10^{20}
j-invariant 603960502063363133490476421875 \frac{6039605020633631}{33490476421875}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+546333x455332574y^2=x^3+546333x-455332574 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+546333xz2455332574z3y^2z=x^3+546333xz^2-455332574z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3+546333x455332574y^2=x^3+546333x-455332574 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, 546333, -455332574])
 
gp: E = ellinit([0, 0, 0, 546333, -455332574])
 
magma: E := EllipticCurve([0, 0, 0, 546333, -455332574]);
 
oscar: E = elliptic_curve([0, 0, 0, 546333, -455332574])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1247,46530)(1247, 46530)0.852445585257773957781242205460.85244558525777395778124220546\infty
(785,21384)(785, 21384)1.51572271465711604855477920851.5157227146571160485547792085\infty
(542,0)(542, 0)0022

Integral points

(542,0) \left(542, 0\right) , (617,±10800)(617,\pm 10800), (642,±12650)(642,\pm 12650), (785,±21384)(785,\pm 21384), (1247,±46530)(1247,\pm 46530), (1566,±65120)(1566,\pm 65120), (2567,±133650)(2567,\pm 133650), (4217,±277200)(4217,\pm 277200), (6417,±517000)(6417,\pm 517000), (19577,±2741040)(19577,\pm 2741040), (55217,±12976200)(55217,\pm 12976200), (119687,±41407470)(119687,\pm 41407470), (878585,±823523184)(878585,\pm 823523184) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  372240 372240  = 2432511472^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 47
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  100002026748096000000-100002026748096000000 = 121231256113472-1 \cdot 2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 11^{3} \cdot 47^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  603960502063363133490476421875 \frac{6039605020633631}{33490476421875}  = 365611347218211133^{-6} \cdot 5^{-6} \cdot 11^{-3} \cdot 47^{-2} \cdot 182111^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.51968441437260323466952334532.5196844143726032346695233453
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.27723108947860307955466860541.2772310894786030795546686054
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.94127542955923020.9412754295592302
Szpiro ratio: σm\sigma_{m} ≈ 4.1627035648378084.162703564837808

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.28727897599894954117086844241.2872789759989495411708684424
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.0948840227215522732052216089670.094884022721552273205221608967
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 576 576  = 2222(23)32 2^{2}\cdot2^{2}\cdot( 2 \cdot 3 )\cdot3\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 17.58847789550316551366570928917.588477895503165513665709289
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

17.588477896L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.0948841.2872795762217.588477896\displaystyle 17.588477896 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.094884 \cdot 1.287279 \cdot 576}{2^2} \approx 17.588477896

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 372240.2.a.du

q+q5+2q7+q116q136q172q19+O(q20) q + q^{5} + 2 q^{7} + q^{11} - 6 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 12386304
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 4 12 0
33 44 I6I_{6}^{*} additive -1 2 12 6
55 66 I6I_{6} split multiplicative -1 1 6 6
1111 33 I3I_{3} split multiplicative -1 1 3 3
4747 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 2, 2, 5], [31017, 4, 31016, 5], [16922, 1, 22559, 0], [1, 4, 0, 1], [7757, 23266, 23264, 7755], [24817, 4, 18614, 9], [1, 0, 4, 1], [20681, 4, 10342, 9], [1321, 4, 2642, 9], [3, 4, 8, 11]]
 
GL(2,Integers(31020)).subgroup(gens)
 
Gens := [[1, 2, 2, 5], [31017, 4, 31016, 5], [16922, 1, 22559, 0], [1, 4, 0, 1], [7757, 23266, 23264, 7755], [24817, 4, 18614, 9], [1, 0, 4, 1], [20681, 4, 10342, 9], [1321, 4, 2642, 9], [3, 4, 8, 11]];
 
sub<GL(2,Integers(31020))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 31020=22351147 31020 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 47 , index 1212, genus 00, and generators

(1225),(310174310165),(169221225590),(1401),(775723266232647755),(248174186149),(1041),(206814103429),(1321426429),(34811)\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 31017 & 4 \\ 31016 & 5 \end{array}\right),\left(\begin{array}{rr} 16922 & 1 \\ 22559 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7757 & 23266 \\ 23264 & 7755 \end{array}\right),\left(\begin{array}{rr} 24817 & 4 \\ 18614 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 20681 & 4 \\ 10342 & 9 \end{array}\right),\left(\begin{array}{rr} 1321 & 4 \\ 2642 & 9 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[31020])K:=\Q(E[31020]) is a degree-1161451693670400011614516936704000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/31020Z)\GL_2(\Z/31020\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 99=3211 99 = 3^{2} \cdot 11
33 additive 66 752=2447 752 = 2^{4} \cdot 47
55 split multiplicative 66 74448=24321147 74448 = 2^{4} \cdot 3^{2} \cdot 11 \cdot 47
1111 split multiplicative 1212 33840=2432547 33840 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 47
4747 split multiplicative 4848 7920=2432511 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 372240.du consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 7755.b2, its twist by 1212.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(11)\Q(\sqrt{-11}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.2.5467275.3 Z/4Z\Z/4\Z not in database
88 8.0.3616822607000625.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.2.2731996760832.2 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.