y 2 = x 3 + 546333 x − 455332574 y^2=x^3+546333x-455332574 y 2 = x 3 + 5 4 6 3 3 3 x − 4 5 5 3 3 2 5 7 4
(homogenize , simplify )
y 2 z = x 3 + 546333 x z 2 − 455332574 z 3 y^2z=x^3+546333xz^2-455332574z^3 y 2 z = x 3 + 5 4 6 3 3 3 x z 2 − 4 5 5 3 3 2 5 7 4 z 3
(dehomogenize , simplify )
y 2 = x 3 + 546333 x − 455332574 y^2=x^3+546333x-455332574 y 2 = x 3 + 5 4 6 3 3 3 x − 4 5 5 3 3 2 5 7 4
(homogenize , minimize )
sage: E = EllipticCurve([0, 0, 0, 546333, -455332574])
gp: E = ellinit([0, 0, 0, 546333, -455332574])
magma: E := EllipticCurve([0, 0, 0, 546333, -455332574]);
oscar: E = elliptic_curve([0, 0, 0, 546333, -455332574])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z ⊕ Z / 2 Z \Z \oplus \Z \oplus \Z/{2}\Z Z ⊕ Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 1247 , 46530 ) (1247, 46530) ( 1 2 4 7 , 4 6 5 3 0 ) 0.85244558525777395778124220546 0.85244558525777395778124220546 0 . 8 5 2 4 4 5 5 8 5 2 5 7 7 7 3 9 5 7 7 8 1 2 4 2 2 0 5 4 6 ∞ \infty ∞
( 785 , 21384 ) (785, 21384) ( 7 8 5 , 2 1 3 8 4 ) 1.5157227146571160485547792085 1.5157227146571160485547792085 1 . 5 1 5 7 2 2 7 1 4 6 5 7 1 1 6 0 4 8 5 5 4 7 7 9 2 0 8 5 ∞ \infty ∞
( 542 , 0 ) (542, 0) ( 5 4 2 , 0 ) 0 0 0 2 2 2
( 542 , 0 ) \left(542, 0\right) ( 5 4 2 , 0 ) , ( 617 , ± 10800 ) (617,\pm 10800) ( 6 1 7 , ± 1 0 8 0 0 ) , ( 642 , ± 12650 ) (642,\pm 12650) ( 6 4 2 , ± 1 2 6 5 0 ) , ( 785 , ± 21384 ) (785,\pm 21384) ( 7 8 5 , ± 2 1 3 8 4 ) , ( 1247 , ± 46530 ) (1247,\pm 46530) ( 1 2 4 7 , ± 4 6 5 3 0 ) , ( 1566 , ± 65120 ) (1566,\pm 65120) ( 1 5 6 6 , ± 6 5 1 2 0 ) , ( 2567 , ± 133650 ) (2567,\pm 133650) ( 2 5 6 7 , ± 1 3 3 6 5 0 ) , ( 4217 , ± 277200 ) (4217,\pm 277200) ( 4 2 1 7 , ± 2 7 7 2 0 0 ) , ( 6417 , ± 517000 ) (6417,\pm 517000) ( 6 4 1 7 , ± 5 1 7 0 0 0 ) , ( 19577 , ± 2741040 ) (19577,\pm 2741040) ( 1 9 5 7 7 , ± 2 7 4 1 0 4 0 ) , ( 55217 , ± 12976200 ) (55217,\pm 12976200) ( 5 5 2 1 7 , ± 1 2 9 7 6 2 0 0 ) , ( 119687 , ± 41407470 ) (119687,\pm 41407470) ( 1 1 9 6 8 7 , ± 4 1 4 0 7 4 7 0 ) , ( 878585 , ± 823523184 ) (878585,\pm 823523184) ( 8 7 8 5 8 5 , ± 8 2 3 5 2 3 1 8 4 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
372240 372240 3 7 2 2 4 0 = 2 4 ⋅ 3 2 ⋅ 5 ⋅ 11 ⋅ 47 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 47 2 4 ⋅ 3 2 ⋅ 5 ⋅ 1 1 ⋅ 4 7
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 100002026748096000000 -100002026748096000000 − 1 0 0 0 0 2 0 2 6 7 4 8 0 9 6 0 0 0 0 0 0 = − 1 ⋅ 2 12 ⋅ 3 12 ⋅ 5 6 ⋅ 1 1 3 ⋅ 4 7 2 -1 \cdot 2^{12} \cdot 3^{12} \cdot 5^{6} \cdot 11^{3} \cdot 47^{2} − 1 ⋅ 2 1 2 ⋅ 3 1 2 ⋅ 5 6 ⋅ 1 1 3 ⋅ 4 7 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
6039605020633631 33490476421875 \frac{6039605020633631}{33490476421875} 3 3 4 9 0 4 7 6 4 2 1 8 7 5 6 0 3 9 6 0 5 0 2 0 6 3 3 6 3 1 = 3 − 6 ⋅ 5 − 6 ⋅ 1 1 − 3 ⋅ 4 7 − 2 ⋅ 18211 1 3 3^{-6} \cdot 5^{-6} \cdot 11^{-3} \cdot 47^{-2} \cdot 182111^{3} 3 − 6 ⋅ 5 − 6 ⋅ 1 1 − 3 ⋅ 4 7 − 2 ⋅ 1 8 2 1 1 1 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.5196844143726032346695233453 2.5196844143726032346695233453 2 . 5 1 9 6 8 4 4 1 4 3 7 2 6 0 3 2 3 4 6 6 9 5 2 3 3 4 5 3
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.2772310894786030795546686054 1.2772310894786030795546686054 1 . 2 7 7 2 3 1 0 8 9 4 7 8 6 0 3 0 7 9 5 5 4 6 6 8 6 0 5 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9412754295592302 0.9412754295592302 0 . 9 4 1 2 7 5 4 2 9 5 5 9 2 3 0 2
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.162703564837808 4.162703564837808 4 . 1 6 2 7 0 3 5 6 4 8 3 7 8 0 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 2 2 2
Mordell-Weil rank :
r r r = 2 2 2
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.2872789759989495411708684424 1.2872789759989495411708684424 1 . 2 8 7 2 7 8 9 7 5 9 9 8 9 4 9 5 4 1 1 7 0 8 6 8 4 4 2 4
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.094884022721552273205221608967 0.094884022721552273205221608967 0 . 0 9 4 8 8 4 0 2 2 7 2 1 5 5 2 2 7 3 2 0 5 2 2 1 6 0 8 9 6 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 576 576 5 7 6
= 2 2 ⋅ 2 2 ⋅ ( 2 ⋅ 3 ) ⋅ 3 ⋅ 2 2^{2}\cdot2^{2}\cdot( 2 \cdot 3 )\cdot3\cdot2 2 2 ⋅ 2 2 ⋅ ( 2 ⋅ 3 ) ⋅ 3 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 2 ) ( E , 1 ) / 2 ! L^{(2)}(E,1)/2! L ( 2 ) ( E , 1 ) / 2 ! ≈ 17.588477895503165513665709289 17.588477895503165513665709289 1 7 . 5 8 8 4 7 7 8 9 5 5 0 3 1 6 5 5 1 3 6 6 5 7 0 9 2 8 9
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
17.588477896 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.094884 ⋅ 1.287279 ⋅ 576 2 2 ≈ 17.588477896 \displaystyle 17.588477896 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.094884 \cdot 1.287279 \cdot 576}{2^2} \approx 17.588477896 1 7 . 5 8 8 4 7 7 8 9 6 ≈ L ( 2 ) ( E , 1 ) / 2 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 0 9 4 8 8 4 ⋅ 1 . 2 8 7 2 7 9 ⋅ 5 7 6 ≈ 1 7 . 5 8 8 4 7 7 8 9 6
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
372240.2.a.du
q + q 5 + 2 q 7 + q 11 − 6 q 13 − 6 q 17 − 2 q 19 + O ( q 20 ) q + q^{5} + 2 q^{7} + q^{11} - 6 q^{13} - 6 q^{17} - 2 q^{19} + O(q^{20}) q + q 5 + 2 q 7 + q 1 1 − 6 q 1 3 − 6 q 1 7 − 2 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 5 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 2, 2, 5], [31017, 4, 31016, 5], [16922, 1, 22559, 0], [1, 4, 0, 1], [7757, 23266, 23264, 7755], [24817, 4, 18614, 9], [1, 0, 4, 1], [20681, 4, 10342, 9], [1321, 4, 2642, 9], [3, 4, 8, 11]]
GL(2,Integers(31020)).subgroup(gens)
Gens := [[1, 2, 2, 5], [31017, 4, 31016, 5], [16922, 1, 22559, 0], [1, 4, 0, 1], [7757, 23266, 23264, 7755], [24817, 4, 18614, 9], [1, 0, 4, 1], [20681, 4, 10342, 9], [1321, 4, 2642, 9], [3, 4, 8, 11]];
sub<GL(2,Integers(31020))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 31020 = 2 2 ⋅ 3 ⋅ 5 ⋅ 11 ⋅ 47 31020 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 47 3 1 0 2 0 = 2 2 ⋅ 3 ⋅ 5 ⋅ 1 1 ⋅ 4 7 , index 12 12 1 2 , genus 0 0 0 , and generators
( 1 2 2 5 ) , ( 31017 4 31016 5 ) , ( 16922 1 22559 0 ) , ( 1 4 0 1 ) , ( 7757 23266 23264 7755 ) , ( 24817 4 18614 9 ) , ( 1 0 4 1 ) , ( 20681 4 10342 9 ) , ( 1321 4 2642 9 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
31017 & 4 \\
31016 & 5
\end{array}\right),\left(\begin{array}{rr}
16922 & 1 \\
22559 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
7757 & 23266 \\
23264 & 7755
\end{array}\right),\left(\begin{array}{rr}
24817 & 4 \\
18614 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
20681 & 4 \\
10342 & 9
\end{array}\right),\left(\begin{array}{rr}
1321 & 4 \\
2642 & 9
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 1 2 2 5 ) , ( 3 1 0 1 7 3 1 0 1 6 4 5 ) , ( 1 6 9 2 2 2 2 5 5 9 1 0 ) , ( 1 0 4 1 ) , ( 7 7 5 7 2 3 2 6 4 2 3 2 6 6 7 7 5 5 ) , ( 2 4 8 1 7 1 8 6 1 4 4 9 ) , ( 1 4 0 1 ) , ( 2 0 6 8 1 1 0 3 4 2 4 9 ) , ( 1 3 2 1 2 6 4 2 4 9 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 31020 ] ) K:=\Q(E[31020]) K : = Q ( E [ 3 1 0 2 0 ] ) is a degree-11614516936704000 11614516936704000 1 1 6 1 4 5 1 6 9 3 6 7 0 4 0 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 31020 Z ) \GL_2(\Z/31020\Z) GL 2 ( Z / 3 1 0 2 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
99 = 3 2 ⋅ 11 99 = 3^{2} \cdot 11 9 9 = 3 2 ⋅ 1 1
3 3 3
additive
6 6 6
752 = 2 4 ⋅ 47 752 = 2^{4} \cdot 47 7 5 2 = 2 4 ⋅ 4 7
5 5 5
split multiplicative
6 6 6
74448 = 2 4 ⋅ 3 2 ⋅ 11 ⋅ 47 74448 = 2^{4} \cdot 3^{2} \cdot 11 \cdot 47 7 4 4 4 8 = 2 4 ⋅ 3 2 ⋅ 1 1 ⋅ 4 7
11 11 1 1
split multiplicative
12 12 1 2
33840 = 2 4 ⋅ 3 2 ⋅ 5 ⋅ 47 33840 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 47 3 3 8 4 0 = 2 4 ⋅ 3 2 ⋅ 5 ⋅ 4 7
47 47 4 7
split multiplicative
48 48 4 8
7920 = 2 4 ⋅ 3 2 ⋅ 5 ⋅ 11 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 7 9 2 0 = 2 4 ⋅ 3 2 ⋅ 5 ⋅ 1 1
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 372240.du
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
7755.b2 , its twist by 12 12 1 2 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 11 ) \Q(\sqrt{-11}) Q ( − 1 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.2.5467275.3
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
8.0.3616822607000625.3
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.2.2731996760832.2
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.