Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 377520a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
377520.a2 | 377520a1 | \([0, -1, 0, 1357184, -872153984]\) | \(557820238477845431/985142146218750\) | \(-488252209940352000000\) | \([]\) | \(18662400\) | \(2.6546\) | \(\Gamma_0(N)\)-optimal |
377520.a1 | 377520a2 | \([0, -1, 0, -45901456, -120144065600]\) | \(-21580315425730848803929/96405029296875000\) | \(-47779875000000000000000\) | \([]\) | \(55987200\) | \(3.2039\) |
Rank
sage: E.rank()
The elliptic curves in class 377520a have rank \(1\).
Complex multiplication
The elliptic curves in class 377520a do not have complex multiplication.Modular form 377520.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.