Properties

Label 377520fc
Number of curves $4$
Conductor $377520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("fc1")
 
E.isogeny_class()
 

Elliptic curves in class 377520fc

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
377520.fc3 377520fc1 \([0, 1, 0, -26176, 1572404]\) \(273359449/9360\) \(67919097692160\) \([2]\) \(1105920\) \(1.4260\) \(\Gamma_0(N)\)-optimal
377520.fc2 377520fc2 \([0, 1, 0, -64896, -4204620]\) \(4165509529/1368900\) \(9933168037478400\) \([2, 2]\) \(2211840\) \(1.7726\)  
377520.fc4 377520fc3 \([0, 1, 0, 186784, -28667916]\) \(99317171591/106616250\) \(-773640972149760000\) \([2]\) \(4423680\) \(2.1191\)  
377520.fc1 377520fc4 \([0, 1, 0, -936096, -348851340]\) \(12501706118329/2570490\) \(18652282203709440\) \([2]\) \(4423680\) \(2.1191\)  

Rank

sage: E.rank()
 

The elliptic curves in class 377520fc have rank \(1\).

Complex multiplication

The elliptic curves in class 377520fc do not have complex multiplication.

Modular form 377520.2.a.fc

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} + q^{13} - q^{15} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.