E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 377520v
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
377520.v4 |
377520v1 |
[0,−1,0,−13471,−225674] |
9538484224/4712565 |
133577541823440 |
[2] |
1228800 |
1.4036
|
Γ0(N)-optimal |
377520.v2 |
377520v2 |
[0,−1,0,−115716,15029280] |
377843214544/4601025 |
2086655091206400 |
[2,2] |
2457600 |
1.7501
|
|
377520.v1 |
377520v3 |
[0,−1,0,−1846016,966002160] |
383507853966436/57915 |
105062354242560 |
[2] |
4915200 |
2.0967
|
|
377520.v3 |
377520v4 |
[0,−1,0,−21336,38737536] |
−592143556/356874375 |
−647398118040960000 |
[2] |
4915200 |
2.0967
|
|
The elliptic curves in class 377520v have
rank 0.
The elliptic curves in class 377520v do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.