Properties

Label 377520v
Number of curves 44
Conductor 377520377520
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 377520v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
377520.v4 377520v1 [0,1,0,13471,225674][0, -1, 0, -13471, -225674] 9538484224/47125659538484224/4712565 133577541823440133577541823440 [2][2] 12288001228800 1.40361.4036 Γ0(N)\Gamma_0(N)-optimal
377520.v2 377520v2 [0,1,0,115716,15029280][0, -1, 0, -115716, 15029280] 377843214544/4601025377843214544/4601025 20866550912064002086655091206400 [2,2][2, 2] 24576002457600 1.75011.7501  
377520.v1 377520v3 [0,1,0,1846016,966002160][0, -1, 0, -1846016, 966002160] 383507853966436/57915383507853966436/57915 105062354242560105062354242560 [2][2] 49152004915200 2.09672.0967  
377520.v3 377520v4 [0,1,0,21336,38737536][0, -1, 0, -21336, 38737536] 592143556/356874375-592143556/356874375 647398118040960000-647398118040960000 [2][2] 49152004915200 2.09672.0967  

Rank

sage: E.rank()
 

The elliptic curves in class 377520v have rank 00.

Complex multiplication

The elliptic curves in class 377520v do not have complex multiplication.

Modular form 377520.2.a.v

sage: E.q_eigenform(10)
 
qq3q5+q9q13+q152q17+8q19+O(q20)q - q^{3} - q^{5} + q^{9} - q^{13} + q^{15} - 2 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.