Properties

Label 380.a
Number of curves $2$
Conductor $380$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 380.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
380.a1 380a2 \([0, 0, 0, -103, -402]\) \(472058064/475\) \(121600\) \([2]\) \(48\) \(-0.10516\)  
380.a2 380a1 \([0, 0, 0, -8, -3]\) \(3538944/1805\) \(28880\) \([2]\) \(24\) \(-0.45173\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 380.a have rank \(1\).

Complex multiplication

The elliptic curves in class 380.a do not have complex multiplication.

Modular form 380.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{5} - 2 q^{7} - 3 q^{9} - 4 q^{11} - 4 q^{13} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.