Properties

Label 3800.c
Number of curves $2$
Conductor $3800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 3800.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.c1 3800b2 \([0, 1, 0, -240708, 45375088]\) \(3084800518928/361\) \(180500000000\) \([2]\) \(17920\) \(1.5818\)  
3800.c2 3800b1 \([0, 1, 0, -15083, 701338]\) \(12144109568/130321\) \(4072531250000\) \([2]\) \(8960\) \(1.2352\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3800.c have rank \(0\).

Complex multiplication

The elliptic curves in class 3800.c do not have complex multiplication.

Modular form 3800.2.a.c

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + 2 q^{7} + q^{9} + 4 q^{11} + 8 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.