sage:E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 3800.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3800.c1 |
3800b2 |
[0,1,0,−240708,45375088] |
3084800518928/361 |
180500000000 |
[2] |
17920 |
1.5818
|
|
3800.c2 |
3800b1 |
[0,1,0,−15083,701338] |
12144109568/130321 |
4072531250000 |
[2] |
8960 |
1.2352
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curves in class 3800.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1 |
19 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1−4T+11T2 |
1.11.ae
|
13 |
1+13T2 |
1.13.a
|
17 |
1−8T+17T2 |
1.17.ai
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1−2T+29T2 |
1.29.ac
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 3800.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.