Properties

Label 3800.c
Number of curves 22
Conductor 38003800
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Elliptic curves in class 3800.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.c1 3800b2 [0,1,0,240708,45375088][0, 1, 0, -240708, 45375088] 3084800518928/3613084800518928/361 180500000000180500000000 [2][2] 1792017920 1.58181.5818  
3800.c2 3800b1 [0,1,0,15083,701338][0, 1, 0, -15083, 701338] 12144109568/13032112144109568/130321 40725312500004072531250000 [2][2] 89608960 1.23521.2352 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 3800.c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
19191+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 14T+11T2 1 - 4 T + 11 T^{2} 1.11.ae
1313 1+13T2 1 + 13 T^{2} 1.13.a
1717 18T+17T2 1 - 8 T + 17 T^{2} 1.17.ai
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 12T+29T2 1 - 2 T + 29 T^{2} 1.29.ac
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 3800.c do not have complex multiplication.

Modular form 3800.2.a.c

Copy content sage:E.q_eigenform(10)
 
q2q3+2q7+q9+4q11+8q17q19+O(q20)q - 2 q^{3} + 2 q^{7} + q^{9} + 4 q^{11} + 8 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.