Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 3800.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3800.c1 | 3800b2 | \([0, 1, 0, -240708, 45375088]\) | \(3084800518928/361\) | \(180500000000\) | \([2]\) | \(17920\) | \(1.5818\) | |
3800.c2 | 3800b1 | \([0, 1, 0, -15083, 701338]\) | \(12144109568/130321\) | \(4072531250000\) | \([2]\) | \(8960\) | \(1.2352\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3800.c have rank \(0\).
Complex multiplication
The elliptic curves in class 3800.c do not have complex multiplication.Modular form 3800.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.