Properties

Label 3800.e
Number of curves $4$
Conductor $3800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 3800.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.e1 3800a4 \([0, 0, 0, -50675, 4390750]\) \(899466517764/95\) \(1520000000\) \([4]\) \(6144\) \(1.1900\)  
3800.e2 3800a3 \([0, 0, 0, -5675, -54250]\) \(1263284964/651605\) \(10425680000000\) \([2]\) \(6144\) \(1.1900\)  
3800.e3 3800a2 \([0, 0, 0, -3175, 68250]\) \(884901456/9025\) \(36100000000\) \([2, 2]\) \(3072\) \(0.84346\)  
3800.e4 3800a1 \([0, 0, 0, -50, 2625]\) \(-55296/11875\) \(-2968750000\) \([2]\) \(1536\) \(0.49689\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 3800.e have rank \(1\).

Complex multiplication

The elliptic curves in class 3800.e do not have complex multiplication.

Modular form 3800.2.a.e

sage: E.q_eigenform(10)
 
\(q - 3 q^{9} - 4 q^{11} + 6 q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.