Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 3800.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
3800.e1 | 3800a4 | \([0, 0, 0, -50675, 4390750]\) | \(899466517764/95\) | \(1520000000\) | \([4]\) | \(6144\) | \(1.1900\) | |
3800.e2 | 3800a3 | \([0, 0, 0, -5675, -54250]\) | \(1263284964/651605\) | \(10425680000000\) | \([2]\) | \(6144\) | \(1.1900\) | |
3800.e3 | 3800a2 | \([0, 0, 0, -3175, 68250]\) | \(884901456/9025\) | \(36100000000\) | \([2, 2]\) | \(3072\) | \(0.84346\) | |
3800.e4 | 3800a1 | \([0, 0, 0, -50, 2625]\) | \(-55296/11875\) | \(-2968750000\) | \([2]\) | \(1536\) | \(0.49689\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 3800.e have rank \(1\).
Complex multiplication
The elliptic curves in class 3800.e do not have complex multiplication.Modular form 3800.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.