Properties

Label 3800a
Number of curves 44
Conductor 38003800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 3800a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
3800.e4 3800a1 [0,0,0,50,2625][0, 0, 0, -50, 2625] 55296/11875-55296/11875 2968750000-2968750000 [2][2] 15361536 0.496890.49689 Γ0(N)\Gamma_0(N)-optimal
3800.e3 3800a2 [0,0,0,3175,68250][0, 0, 0, -3175, 68250] 884901456/9025884901456/9025 3610000000036100000000 [2,2][2, 2] 30723072 0.843460.84346  
3800.e2 3800a3 [0,0,0,5675,54250][0, 0, 0, -5675, -54250] 1263284964/6516051263284964/651605 1042568000000010425680000000 [2][2] 61446144 1.19001.1900  
3800.e1 3800a4 [0,0,0,50675,4390750][0, 0, 0, -50675, 4390750] 899466517764/95899466517764/95 15200000001520000000 [4][4] 61446144 1.19001.1900  

Rank

sage: E.rank()
 

The elliptic curves in class 3800a have rank 11.

Complex multiplication

The elliptic curves in class 3800a do not have complex multiplication.

Modular form 3800.2.a.a

sage: E.q_eigenform(10)
 
q3q94q11+6q13+6q17q19+O(q20)q - 3 q^{9} - 4 q^{11} + 6 q^{13} + 6 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.