E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 3800a
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
3800.e4 |
3800a1 |
[0,0,0,−50,2625] |
−55296/11875 |
−2968750000 |
[2] |
1536 |
0.49689
|
Γ0(N)-optimal |
3800.e3 |
3800a2 |
[0,0,0,−3175,68250] |
884901456/9025 |
36100000000 |
[2,2] |
3072 |
0.84346
|
|
3800.e2 |
3800a3 |
[0,0,0,−5675,−54250] |
1263284964/651605 |
10425680000000 |
[2] |
6144 |
1.1900
|
|
3800.e1 |
3800a4 |
[0,0,0,−50675,4390750] |
899466517764/95 |
1520000000 |
[4] |
6144 |
1.1900
|
|
The elliptic curves in class 3800a have
rank 1.
The elliptic curves in class 3800a do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.